Monodispersed Hierarchical ZnGa₂O₄ Microflowers Self-Assembled by Hexagonal Nanopetals for Self-Powered Solar-Blind Detection

^s Yue Teng^{*a,b*}, Le Xin Song^{*a,b,**}, Wei Liu^{*a,**}, Zhe Yuan Xu^{*b*}, Qing Shan Wang^{*b*} and Mao Mao Ruan^{*b*}

^a CAS Key Laboratory of Materials for Energy Conversion & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Jin Zhai Road ¹⁰ 96, Hefei 230026, China

E-mail: solexin@ustc.edu.cn; wliu@ustc.edu.cn; Fax: +86-551-63601592

^b Department of Chemistry, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China

15

Pages	Contents
1	A table of contents.
2	Experimental Section
3	The FE-SEM images of the materials obtained using the same conditions as the ZG-1 but at 1 h (A, B), 2 h (C, D) and 3 h (E, F).
4	The XRD patterns of the products obtained using the same conditions as the ZG-1 when urea was substituted by NaOH for adjusting pH: A, pH 5.1; B, pH 7.2.
5	The N_2 adsorption-desorption isotherm and pore size distribution of the ZG-1.
6	The N_2 adsorption-desorption isotherm and pore size distribution of the ZG-2.
7	The N_2 adsorption-desorption isotherm and pore size distribution of the ZG-3.
8	Photoresponses of ZGs for solar-blind photodetection.
9	The I–V characteristic of the heterojunctions in the ZG-1/PVB in absence of UV light illumination.
10	Current-time curves of PVB (4.8 μ g·cm ⁻²) on ITO and the ZG-1/PVB (4.8 μ g·cm ⁻²) on ITO.
11	Photoresponses of different materials for solar-blind photodetection.
12	Current-time curves of the ZG-1 under 254 (red line) and 365 (blue line) nm illumination.

A list of the contents for all the Supporting Information

Experimental Section

35

40

45

50

Preparation of the ZG materials: In the preparation experiments, all the reagents were analytical grade and were used without further purification. In a typical synthesis of ZG-1, gallium chloride (0.253 g, 1.4 mmol) and dihydrate ¹⁰ zinc acetate (0.157 g, 0.7 mmol) were dissolved in a water/ethanol solution (40 mL) with a volumetric ratio of water to ethanol (VRWE, 1:1.6). Then, 1.0 g of urea (17 mmol) was added to the solution under vigorous stirring for 1 h at room temperature. A homogeneous and clear solution was obtained. Subsequently, this solution was transferred into a Teflon-lined stainless steel autoclave, and a solvothermal treatment was performed at 473 K for 4 h. Finally, a white product (ZG-1, 0.154 g, yield 82%) was obtained by filtration and washing several times with ethanol and distilled ¹⁵ water, and drying in vacuum. The series materials obtained at the same conditions but with different amounts of urea: 0.6 g (10 mmol), 0.75 g (13 mmol), 0.9 g (15 mmol), 1.2 g (20 mmol) and 1.5 g (25 mmol) were marked as ZG-1a, b, c, d and e, respectively. The materials obtained using VRWEs of 1:7 and 1:0.3 were marked as ZG-2 and 3, respectively.

Material characterization: XRD measurements were done with a Philips X'Pert Pro X-ray diffractometer using a monochromatized Cu K α radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range $10^{\circ} \le 2\theta \le 80^{\circ}$. FE-SEM and EDS images were performed by using a Supra 40 operated at 5 kV. The Zn and Ga contents of the ZG-1 sample were determined by flame atomic absorption spectrometry using a PerkinElmer AAnalyst 800. The results of elemental analysis (Anal. Calcd for ZG-1: Ga, 51.87; Zn, 24.32. Found: Ga, 51.71; Zn, 25.33) show that the molar ratio of Zn to Ga is 1:1.91. TEM images, HR-TEM images and SAED patterns were obtained in

²⁵ a JEF 2100F field-emission transmission electron microscope using an accelerating voltage of 200 kV. UV-Vis-NIR absorption spectra were recorded in a Shimadzu DUV-3700 spectrophotometer. Barium sulfate powder was used to adjust baseline parameters. PL measurements were acquired on a Perkin Elmer Luminescence spectrometer L550B at room temperature (excited at 260 nm).

Photoresponse Properties: The ZG samples in the presence of different amounts of PVB were coated on the ITO ³⁰ electrodes. The electrodes were immersed in 0.5 mol L^{-1} Na₂SO₄ solution. Current-time curves were obtained by a electrochemical analyzer system, CHI760 (Chenhua, Shanghai, China) in a three-compartment cell with a working electrode, a platinum plate counter electrode and a saturated calomel electrode (SCE) reference electrode under a bias voltage of 0 V using the excitation light of a UV transilluminator (XS-T5, 6W) as the light source (254 nm).

Figure S1. The FE-SEM images of the materials obtained using the same conditions as the ZG-1 but at 1 h (A, B), 2 $_{10}$ h (C, D) and 3 h (E, F). The white bars in the left and right columns refer to 1 μ m and 100 nm, respectively.

Figure S2. The XRD patterns of the products obtained using the same conditions as the ZG-1 when urea was substituted by NaOH for adjusting pH: A, pH 5.1; B, pH 7.2.

Figure S3. The N₂ adsorption-desorption isotherm and pore size distribution of the ZG-1.

Figure S4. The N_2 adsorption-desorption isotherm and pore size distribution of the ZG-2.

Figure S5. The N₂ adsorption-desorption isotherm and pore size distribution of the ZG-3.

ZGs	$PVB^*/\mu g \cdot cm^{-2}$	RT /s	DT /s	PC /µA	DC /nA	LDR
ZG-1	0.64	0.1	0.1	0.35	1.8	193
	1.28	0.1	0.1	0.68	4.4	153
	3.20	0.2	0.2	1.16	3.1	373
	4.80	0.2	0.3	2.32	2.1	1100
	9.60	0.3	0.3	2.73	34	80
	32.0	25	0.2	4.31	37	128
ZG- 2	4.80	0.3	0.4	3.32	25	132
ZG- 3	4.80	_	0.5	_	33	_

Table S1. Photoresponses of the ZGs for solar-blind photodetection.

*The amount of PVB.

Figure S6. The I–V characteristic of the heterojunctions in the ZG-1/PVB in absence of UV light illumination.

Figure S7. Current-time curves of PVB ($4.8 \ \mu g \cdot cm^{-2}$) on ITO and the ZG-1/PVB ($4.8 \ \mu g \cdot cm^{-2}$) on ITO.

Nanomaterials	RT /s	LDR	Bias voltage /V	Power density /µW cm ⁻²	Wavelength /nm	Reference
ZnGa ₂ O ₄ microflowers	0.2	1100	0	28.4	254	the present work
ZnGa ₂ O ₄ microspheres	0.3	132	0	28.4	254	the present work
ZnGa ₂ O ₄ bulks	_	-	0	28.4	254	the present work
ZnGa ₂ O ₄ nanowires	~2	200	30	-	254	1
γ -Ga ₂ O ₃ nanoflowers	< 0.1	220	0.5	-	254	2
β -Ga ₂ O ₃ nanowires	0.22	666	8	-	254	3
β -Ga ₂ O ₃ nanowires	0.5	21	20	-	254	4
β -Ga ₂ O ₃ nanowires	_	10^{4}	50	2000	254	5
β -Ga ₂ O ₃ nanobelts	< 0.3	10^{3}	20	98.3	250	6
β -Ga ₂ O ₃ nanobelts	91	100	30	65	250	7
Zn2GeO4 nanowires	12	10^{4}	8	50.2	245	8
MgZnO film	-	200	150	-	254	9

Table S2. Photoresponses of different materials for solar-blind photodetection.

References

- 10 [1] P. Feng, J. Y. Zhang, Q. Wan, T. H. Wang, J. Appl. Phys., 2007, 102, 074309.
- [2] Y. Teng, L. X. Song, A. Ponchel, Z. K. Yang, J. Xia, Adv. Mater., 2014, 26, 6238.
- [3] P. Feng, J. Y. Zhang, Q. H. Li, T. H. Wang, Appl. Phys. Lett., 2006, 88, 153107.
- [4] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, T. H. Wang, Appl. Phys. Lett., 2006, 89, 112114.
- [5] Y. B. Li, T. Tokizono, M. Y. Liao, M. A. Zhong, Y. Koide, I. Yamada, J. J. Delaunay, Adv. Funct. Mater., 2010, 20, 3972.
- 15 [6] R. J. Zou, Z. Y. Zhang, Q. Liu, J. Q. Hu, L. W. Sang, M. Y. Liao, W. J. Zhang, Small, 2014, 10, 1848.
- [7] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Nanoscale, 2011, 3, 1120.
- [8] C. Li, Y. Bando, M. Y. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett., 2010, 97, 161102.

[9] X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, A. Y. Kuznetsov, Adv. Mater., 2009, 21, 4625.

20

Figure S8. Current-time curves of the ZG-1 under 254 (red line) and 365 (blue line) nm illumination.