D-A-D type chromophores with aggregation-induced emission and two-photon absorption: synthesis, optical characteristics and cell imaging

Ai-Xiang Ding, Hu-Jun Hao, Yong-Guang Gao, You-Di Shi, Quan Tang, and Zhong-Lin Lu*

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street, Beijing 100875, China

Content

1. Tables and Figures for OPEF (Table S1-S2, Figure S1-S3)	1-3
2. Tables and Figures for theoretical calculations (Figure S4-S5, Table S3)	3-4
3. Tables and Figures for AIE (Figure S6-S10, Table S4)	4-6
4. Figures for TPEF (Figure S11)	6
5. Flow cytometric assay (Figure S12)	6
6. Cell localized study (Figure S13)	7
7. Characteristic spectra for newly synthesized compounds (Figure S14-S35)	7-18

1. Tables and Figures for OPEF

						•	•									
				1					2					3		
solvent	Δf	$\lambda_{ab}(nm)$	$\lambda_{\text{em}}(nm)$	$\Delta v/10^3$	$\Phi_{\rm F}(\%)$	$\tau (ns)$	$\lambda_{ab}(nm)$	$\lambda_{\rm em}(nm)$	$\Delta v/10^3$	$\Phi_{\rm F}(\%)$	τ (ns)	$\lambda_{ab}(nm)$	$\lambda_{\text{em}}(nm)$	$\Delta v/10^3$	$\Phi_{\rm F}(\%)$	τ (ns)
				(cm ⁻¹)					(cm ⁻¹)					(cm ⁻¹)		
HEX	~ 0	415	488	3.65	2.9	0.86354	n.d.	n.d.	N/A	n.d.	n.d.	407	467	3.2	1.0	0.54778
TOL	0.014	418	553	5.91	4.0	1.25964	429	584	6.18	4.1	1.31737	402	494	4.63	1.1	0.60814
EtOAc	0.201	418	590	7.00	3.9	1.22795	425	604	6.95	2.0	0.77832	399	514	5.2	1.1	0.61221
THF	0.210	420	592	7.09	4.1	1.23467	430	611	6.89	2.0	0.74315	401	516	5.65	0.8	0.62329
DCM	0.218	426	611	7.13	2.5	0.93382	430	609	6.84	1.1	0.68217	397	528	5.87	0.8	0.75276
DMF	0.275	428	617	7.18	1.0	0.61353	431	604	6.59	0.7	0.61537	399	547	6.94	1.1	0.71406
AN	0.306	421	626	7.75	0.6	0.59633	422	615	7.44	0.5	0.60274	394	554	6.91	1.0	0.66786

Table S1 The one-photon optical data of 1, 2, and 3 in various solvents ^a

^{*a*} Abbreviations: λ_{ab} = absorption maximum, λ_{em} = emission maximum, Δv = Stock's shift in cm⁻¹, Φ_F = fluorescence

quantum yield, τ = fluorescence lifetime, and n.d. = not detected.

Figure S1 One-photon absorption spectra and excited fluorescence of **1** (a, d), **2** (b, e), and **3** (c, f) in various solvents with different polarity. *Concentration* = 10μ M.

Figure S2 Photographs of **1** (a), **2** (b), and **3** (c) taken under UV 365 nm illumination in different solvents labeled on the top of the bottle. *Concentration* = 10 μ M.

Figure S3 Fluorescence decay curves of 1 (a), 2 (b), and 3 (c) in different solvents. *Concentration* = 10 μ M.

Solvent		1		2		3			
	$k_{ m f}$	$k_{ m nr}$	$k_{ m f}$	$k_{ m nr}$	$k_{ m f}$	k _{nr}			
HEX	0.0336	1.124	N/A	N/A	0.0183	1.807			
TOL	0.0318	0.762	0.0311	0.728	0.0181	1.626			
EtOAc	0.0318	0.783	0.0257	1.259	0.0180	1.615			
THF	0.0332	0.777	0.0269	1.319	0.0128	1.592			
DCM	0.0268	1.044	0.0161	1.450	0.0106	1.318			
DMF	0.0163	1.614	0.0114	1.614	0.0154	1.185			
AN	0.0101	1.667	0.0083	1.651	0.0150	1.482			
$k_{\rm f}$ and $k_{\rm nr}$ represent radiative rate and non-radiative rate, respectively.									

Table S2 The $k_{\rm f}$ and $k_{\rm nr}$ for **1**, **2** and **3** in different solvents.

2. Tables and Figures for theoretical calculations

Figure S4 Optimized structures of 1, 2, and 3, respectively. The planarity of the three conformations are sequenced as 3 > 2 > 1.

Figure S5 Electron cloud distributions and molecular orbital energy diagrams of $1 \sim 3.$

Table S3 Experimental and calculated optical data for chromophores 1, 2, and 3.

Compd	Transitions (S. no.)	OI ^a (Tc) ^b	$E^{c}(eV)$	$Cal.\;\lambda max^{d}\;(nm)$	$Obs.\ \lambda max^d\ (nm)$	Character		
TPEOM-1	1	225 (H) —> 226 (L)	3.013	415	429	$\pi \rightarrow \pi^* (\mathrm{ICT})$		
	2	224 (H-1) —> 226 (L)	3.664	338	346	$\pi \twoheadrightarrow \pi^* (\mathrm{ICT})$		
	3	224 (H-1) -> 227 (L+1)	3.855	302	294	$\pi \rightarrow \pi^*$		
TPEOM-2	1	209 (H) -> 210 (L)	2.994	415	429	$\pi \rightarrow \pi^* (\mathrm{ICT})$		
	2	208 (H-1) -> 210 (L)	3.747	331	351	$\pi \twoheadrightarrow \pi^* (\mathrm{ICT})$		
	3	207 (H-1) -> 211 (L+1)	3.901	306	296	$\pi {\rightarrow} \pi^*$		
TPEOM-3	1	201 (H) —> 202 (L)	3.005	413	402	$\pi \rightarrow \pi^*(\mathrm{ICT})$		
	2	200 (H-1) -> 202 (L)	3.770	329	345	$\pi \twoheadrightarrow \pi^* (\mathrm{ICT})$		
	3	200 (H-1) -> 203 (L+1)	3.980	312	298	$\pi \rightarrow \pi^*$		
(a) Orbitals involved in the excitations; (b) Transition coefficients; (c) Excitation energies (eV); (d) Calculated								

peak position of the longest absorption; (e) Observed peak position of the longest absorption.

3. Tables and Figures for AIE

Figure S6 (a) FL spectra of **2** in the AN/Water mixtures, $\lambda_{ex} = 420$ nm; (b) Plots of FL quantum yield *vs* water fraction; (c) Photographs taken under UV 365 nm illumination, the number labeled on the top of the bottle represent the water fraction (%). Inset: The FL intensity as a function *vs* the water fraction. *Concentration* = 10 μ M.

Figure S7 (a) FL spectra of **3** in the AN/Water mixtures, $\lambda_{ex} = 420$ nm; (b) Plots of FL quantum yield *vs* water fraction; (c) Photographs taken under UV 365 nm illumination, the number labeled on the top of the bottle represent the water fraction (%). Inset: The FL intensity as a function *vs* the water fraction. *Concentration* = 10 μ M.

Figure S8 UV-Vis spectra of 1 (a), 2 (b), and 3 (c) in the AN/water mixtures with different water fractions, $Concentration = 10 \ \mu\text{M}.$

Table S4 Average diameter and PDI of the chromophores in AN/water mixtures with different water fraction^a

$f_{ m w}(\%)$		1		2		3		
	<i>d</i> (nm)	PDI	<i>d</i> (nm)	PDI	<i>d</i> (nm)	PDI		
60	579.8	0.098	211.4	0.089	360.6	0.037		
80	303.4	0.254	507.2	0.005	289.4	0.006		
100	1533.8	0.367	2626.7	0.526	176.5	0.345		

^{*a*} Abbreviations: *d* = average diameter, PDI = polydispersity index

Figure S9 Particle size distributions of **1** (a), **2** (b) and **3** (c) in AN/water mixtures with $f_w = 60\%$, 80% and 100%. *Concentration* = 10 μ M.

Figure S10 FL lifetime profiles of **1** (a), **2** (b), and **3** (c) in pure and AN/water mixtures with varying f_w from 50 ~ 100%. *Concentration* = 10 μ M.

4. Figures for TPEF

Figure S11 TPEF spectra of chromophores 1 (a) and 2 (b) in toluene pumped by femto-second laser at 300 mW under varying excitation energies from 700-860 nm. *Concentration* = 1 mM.

5. Flow cytometric assay

Figure S12 Flow cytometric profiles of HpeG2 cells incubated with 1, 2 and 3 for 4 h. [Dyes] = 10μ M.

6. Cell localized study

Figure S13 CLSM images of HpeG2 cells after 4 h incubation with DPAI (1 mg/mL) and chromophores (10 μ M).

Figure S16 ¹H NMR spectrum of compound 7 (CDCl₃).

Figure S18 ¹H NMR spectrum of compound **10** (CDCl₃).

Figure S20 ¹H NMR spectrum of compound **11** (CDCl₃).

Figure S22 ¹H NMR spectrum of compound **12** (CDCl₃).

Figure S24 ¹H NMR spectrum of compound **13** (DMSO- d_6).

Figure S25 13 C NMR spectrum of compound **13** (DMSO- d_6).

Figure S26 FT-IR spectra of chromophores $1 \sim 3$.

Figure S28 ¹³C NMR spectrum of chromophore 1 (CDCl₃).

Figure S30 ¹H NMR spectrum of chromophore **2** (DMSO- d_6).

Figure S31 ¹³C NMR spectrum of chromophore **2** (DMSO- d_6).

Figure S32 MALDI-TOF spectrum of chromophore 2.

Figure S34 ¹³C NMR spectrum of chromophore **3** (CDCl₃).

Figure S35 MALDI-TOF spectrum of chromophore **3**.