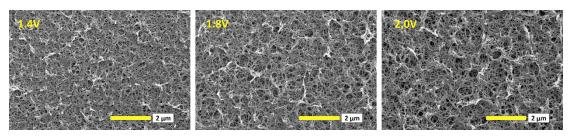
Electronic Supplementary Information

Deterioration Mechanism of Electrochromic poly (3,4-(2,2 dimethylpropylenedioxy) thiophene) Thin Films

Shian Guan,^a Ayman S. Elmezayyen,^a Feifei Zhang,^a Jianming Zheng^a and Chunye Xu^{a,b}


- a. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
- b. CAS Key Lab of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026,

P. R. China.

^{*}Corresponding author

E-mail address: chunye@ustc.edu.cn.

Figure S1

Fig. S1. SEM images of PProDot-Me₂ film under different polymerization voltage (1.4V, 1.8V and 2.0V) (vs. Ag/Ag^+) with growth time for 4 s polymerized in 0.1 M LiClO₄/PC electrolyte.

Figure S2

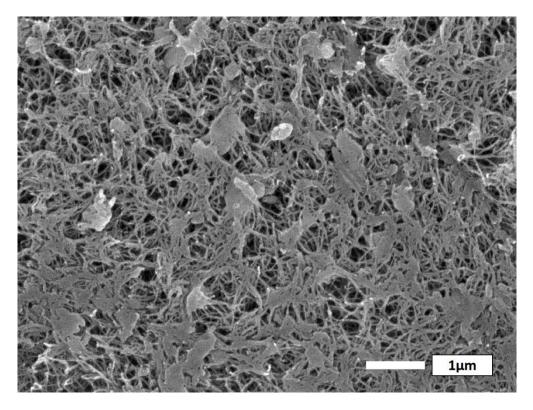


Fig. S2. SEM images of PProDot-Me₂ film with growth time for 20 s polymerized in 0.1M LiClO₄/PC electrolyte at Eg=1.65 V (vs. Ag/Ag⁺).

Figure S3

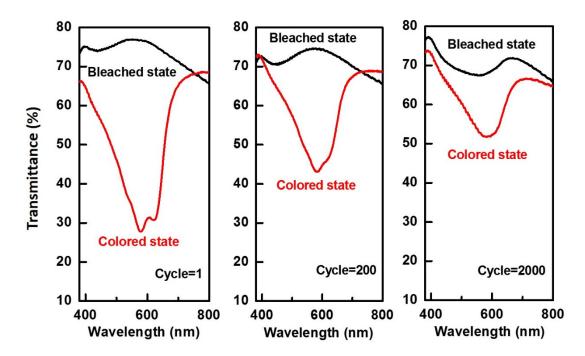


Fig. S3. Transmittances of PProDOT-Me₂ films with different cycles (cycle=1, 200, 2000) under the condition of $\pm 1.2V$ within 3.0s in 0.1M LiClO₄/PC electrolyte.

Figure S4

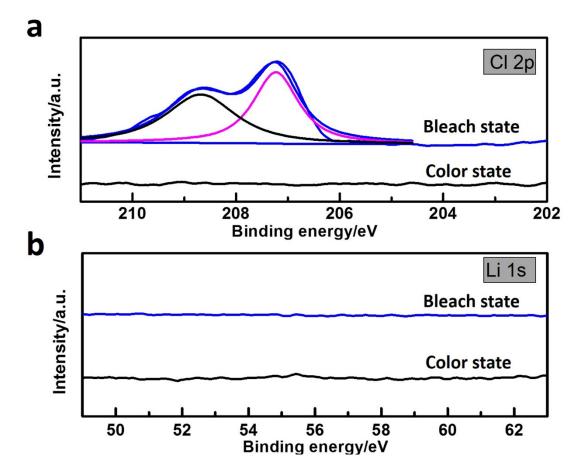
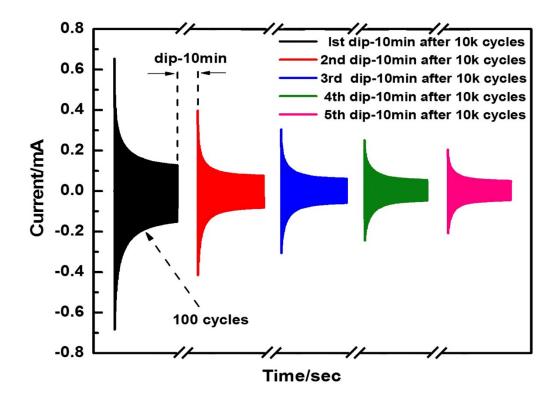



Fig. S4. Cl2p and Li1s spectra of PProDOT-Me₂ film after 40k cycles under the operating condition of \pm 0.3 V (vs. Ag/Ag⁺) within 1.0 s in 0.0125 M LiClO₄/PC electrolyte.

Figure S4

Fig. S5. Stability of the PProDOT-Me₂ film with 10k cycles after 5 times dip in pure PC solution.