Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties

Yanping Wu,^a Sisi Wang,^a Zhifang Li,^a Zhen Shen^b and Hua Lu,^{a*}

a. Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education,

Hangzhou Normal University, Hangzhou, 310012, P. R. China. E-mail: hualu@hznu.edu.cn;

b. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R.

China.

I.1 Materials and instrumentations	
II. Supplementary Figures	
III. ¹ H NMR	

I. Materials and instrumentations

All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air and moisture-sensitive reactions were carried out under nitrogen atmosphere in oven-dried glassware. Glassware was dried in an oven at 120 °C and cooled under a stream of inert gas before use. Both dichloromethane and triethylamine were distilled over calcium hydride. ¹H NMR spectra were recorded on a Bruker DRX400 spectrometer and referenced to the residual proton signals of the solvent. HR-MS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. All the solvents employed for the spectroscopic measurements were of UV spectroscopic grade (Aldrich).

II. Supplementary Figures

Figure S1. Absorption spectra of (*R*)-2 (*R*)-4 in hexane (Top) and CH₂Cl₂ (Bottom).

Figure S2. Theoretical CD spectra of (R)-**2** (top) and (R)-**4** (bottom) calculated using the CAM-B3LYP-TDDFT method. Rotational strengths (R) are given incgs (10⁻⁴⁰ erg esu cm/Gauss).

III. ¹H NMR

S5

LZF-WYP-SNB PROTON CDC13 {D:\20151220} root 46

S7