Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

to the manuscript

Novel Highly Efficient Nanostructured Organosilicon Luminophore with Unusually Fast Photoluminescence

by T.Yu. Starikova^{a,b}, O.V. Borshchev^a, N.M. Surin^a, S.A. Pisarev^{a,c}, E.A. Svidchenko^a, Y.V. Fedorov^d and S.A. Ponomarenko^{a,e}

^a Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya st. 70,

Moscow 117393, Russia; ^b Moscow State University, Department of Materials Science, Leninskie gory 1/73,

Moscow 119234, Russia; ^c Institute of Physiologically Active Compounds of Russian Academy of Sciences, 1,

Severny proezd, Chernogolovka, Moscow region, 142432, Russian Federation; ^d Nesmeyanov Institute of

Organoelement Compounds RAS of Russian Academy of Sciences, Vavilova st., Moscow 119991, Russia;

^e Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1/3, Moscow 119234, Russia

CONTENT

1.	GPC curves of TMS-PT , TMS-PTPTP-TMS , (PTPTP)Si ₂ (2 T-Hex) ₆ and its precursors	S2-S3
2.	NMR spectra of the compounds synthesized	S4-S26
3.	TGA of TMS-PTPTP-TMS and (PTPTP)Si ₂ (2T-Hex) ₆	S27
4.	DSC traces of TMS-PTPTP-TMS and (PTPTP)Si ₂ (2T-Hex) ₆	S28
5.	Optical spectra of reference compounds	S29
6.	Visualization of the frontier molecular orbitals of the structural analogs of NOL's	
	donor and acceptor constituents (isosurfaces at ± 0.015).	S 30
7.	Experimental results of PL lifetime measurements	S31-S33
8.	Optimized molecular model of NOL with the distances between donors and acceptor fragments	S34
9.	List of display items	S35-S36

1. GPC curves of TMS-PT, TMS-PTPTP-TMS, (PTPTP)Si₂(2T-Hex)₆ and its precursors

Figure S1. GPC curve of **TPT** (a) and **PinB-TPT-BPin** (b).

Figure S2. GPC curve of (PTPTP)Si₂(Hex-2T)₆ (a) and BrPhSi(2T-Hex)₃ (b).

Figure S3. GPC curve of TMS-TPT (a), TMS-PT-BPin (b), TMS-PTPTP-TMS (c).

2. NMR spectra of the compounds synthesized

Figure S4. ¹H NMR spectrum of **TPT** (CDCl₃, 60°C, 250 MHz).

Figure S5. ¹³C NMR spectrum of **TPT** (CDCl₃, 60°C, 75 MHz).

Figure S6. ¹H NMR spectrum of **PinB-TPT-BPin** (CDCl₃, 24°C, 300 MHz).

Figure S7. ¹³C NMR spectrum of **PinB-TPT-BPin** (CDCl₃, 24°C, 75 MHz).

-24.75

Figure S8. ¹H NMR spectrum of **BrPhSi(OEt)**₃ (CDCl₃, 24°C, 250 MHz).

Figure S9. ¹H NMR spectrum of **BrPhSiCl₃** (CDCl₃, 24°C, 300 MHz).

Figure S10. ¹³C NMR spectrum of **BrPhSiCl₃**(CDCl₃, 24°C, 75 MHz).

Figure S11. ²⁹Si NMR spectrum of **BrPhSiCl₃**(CDCl₃, 24°C, 60 MHz).

Figure S12. ¹H NMR spectrum of **BrPhSi(2T-Hex)**₃(CDCl₃, 24°C, 250 MHz).

Figure S13. ¹³C NMR spectrum of **BrPhSi(2T-Hex)**₃ (CDCl₃, 24°C, 75 MHz).

Figure S14. ²⁹Si NMR spectrum of **BrPhSi(2T-Hex)**₃ (CDCl₃, 24°C, 60 MHz).

Figure S15. ¹H NMR spectrum of (PTPTP)Si₂(2T-Hex)₆ (CDCl₃, 24°C, 300 MHz).

Figure S16. ¹³C NMR spectrum of (PTPTP)Si₂(2T-Hex)₆ (CDCl₃, 24°C, 75 MHz).

Figure S17. ²⁹Si NMR spectrum of (PTPTP)Si₂(2T-Hex)₆ (CDCl₃, 24°C, 60 MHz)

Figure S18. ¹H NMR spectrum of **TMS-PT** (CDCl₃, 24°C, 300 MHz).

Figure S19. ¹³C NMR spectrum of **TMS-PT** (CDCl₃, 22°C, 75 MHz).

Figure S20. ²⁹Si NMR spectrum of **TMS-PT** (CDCl₃, 22°C, 60 MHz).

Figure S21. ¹H NMR spectrum of **TMS-PT-BPin** (CDCl₃, 22°C, 300 MHz).

Figure S22. ¹³C NMR spectrum of **TMS-PT-BPin** (CDCl₃, 22°C, 75 MHz).

Figure S23. ²⁹Si NMR spectrum of **TMS-PT-BPin** (CDCl₃, 22°C, 60 MHz).

Figure S24. ¹H NMR spectrum of **TMS-PTPTP-TMS** (CDCl₃, 67°C, 300 MHz).

Figure S25. ¹³C NMR spectrum of **TMS-PTPTP-TMS** (CDCl₃, 67°C, 75 MHz).

Figure S26. ²⁹Si NMR spectrum of **TMS-PTPTP-TMS** (CDCl₃, 67°C, 60 MHz).

3. TGA of TMS-PTPTP-TMS and (PTPTP)Si₂(2T-Hex)₆

Figure S27. Thermogravimetric analysis (TGA) of TMS-PTPTP-TMS (a) and (PTPTP)Si₂(2T-Hex)₆ (b).

4. DSC traces of TMS-PTPTP-TMS and (PTPTP)Si₂(2T-Hex)₆

Figure S28. DSC traces of TMS-PTPTP-TMS.

Figure S29. DSC traces of PTPTPSi₂(2T-Hex)₆.

5. Optical spectra of TMS-2T-Hex, PTPTP and TMS-PTPTP-TMS

Figure S30. Absorption (a) and emission (b) spectra of TMS-2T-Hex.

Figure S31. Absorption (a) and emission (b) spectra of **PTPTP**.

Figure S32. Absorption (a) and emission (b) spectra of TMS-PTPTP-TMS.

	РТРТР	TMS-PTPTP-TMS	CH ₃ -2T-TMS
LUMO+1			
LUMO			
номо			
НОМО-1			-88

6. Table S1. Visualization of the frontier molecular orbitals of the structural analogs of NOL's donor and acceptor constituents (isosurfaces at ± 0.015).

7. Experimental results of PL lifetime measurements

Figure S33. PL decay time measurements of TMS-2T-Hex in THF at 310 nm excitation.

Figure S34. PL decay time measurements of **PTPTP** in THF at 369 nm excitation.

Figure S35. PL decay time measurements of **TMS-PTPTP-TMS** in THF at 369 nm excitation.

Figure S36. PL decay time measurements of NOL in THF at 369 nm excitation.

Figure S37. PL decay time measurements of NOL in THF at 340 nm excitation.

Figure S38. Comparison of PL decay time curves for **POPOP** and **NOL** in THF.

Figure S39. Comparison of PL decay time curves for **POPOP** and **NOL** in toluene.

8. Optimized molecular model of NOL with the distances between donors and acceptor fragments

Figure S40. Optimized molecular model of **NOL** with measured distances between the donors **2T** and acceptor **PTPTP** fragments (in Å).

9. List of display items

Figure S1. GPC curve of TPT (a) and PinB-TPT-BPin (b)	S2
Figure S2. GPC curve of (PTPTP)Si ₂ (2 T -Hex) ₆ (a) and BrPhSi (2 T -Hex) ₃ (b)	S 2
Figure S3. GPC curve of TMS-TPT (a), TMS-PT-BPin (b), TMS-PTPTP-TMS (c)	S 3
Figure S4. ¹ H NMR spectrum of TPT (CDCl ₃ , 60°C, 300 MHz)	S4
Figure S5. ¹³ C NMR spectrum of TPT (CDCl ₃ , 60°C, 75 MHz)	S5
Figure S6. ¹ H NMR spectrum of PinB-TPT-BPin (CDCl ₃ , 24°C, 300 MHz)	S 6
Figure S7. ¹³ C NMR spectrum of PinB-TPT-BPin (CDCl ₃ , 24°C, 75 MHz)	S 7
Figure S8. ¹ H NMR spectrum of BrPhSi(OEt) ₃ (CDCl ₃ , 24°C, 250 MHz)	S 8
Figure S9. ¹ H NMR spectrum of BrPhSiCl₃ (CDCl ₃ , 24°C, 300 MHz)	S 9
Figure S10. ¹³ C NMR spectrum of BrPhSiCl₃ (CDCl ₃ , 24°C, 75 MHz)	S10
Figure S11. ²⁹ Si NMR spectrum of BrPhSiCl₃ (CDCl ₃ , 24°C, 60 MHz)	S 11
Figure S12. ¹ H NMR spectrum of BrPhSi(2T-Hex) ₃ (CDCl ₃ , 24°C, 300 MHz)	S12
Figure S13. ¹³ C NMR spectrum of BrPhSi(2T-Hex) ₃ (CDCl ₃ , 24°C, 75 MHz)	S13
Figure S14 ²⁹ Si NMR spectrum of BrPhSi(2T-Hex) ₃ (CDCl ₃ , 24°C, 60 MHz)	S14
Figure S15. ¹ H NMR spectrum of (PTPTP)Si ₂ (2 T-Hex) ₆ (CDCl ₃ , 24°C, 250 MHz)	S15
Figure S16. ¹³ C NMR spectrum of (PTPTP)Si₂(2T-Hex) ₆ (CDCl ₃ , 24°C, 75 MHz)	S16
Figure S17. ²⁹ Si NMR spectrum of (PTPTP)Si ₂ (2T-Hex) ₆ (CDCl ₃ , 24°C, 60 MHz)	S17
Figure S18. ¹ H NMR spectrum of TMS-PT (CDCl ₃ , 24°C, 300 MHz)	S18
Figure S19. ¹³ C NMR spectrum of TMS-PT (CDCl ₃ , 22°C, 75 MHz)	S19
Figure S20. ²⁹ Si NMR spectrum of TMS-PT (CDCl ₃ , 22°C, 60 MHz)	S20
Figure S21. ¹ H NMR spectrum of TMS-PT-BPin (CDCl ₃ , 22°C, 300 MHz)	S21
Figure S22. ¹³ C NMR spectrum of TMS-PT-BPin (CDCl ₃ , 22°C, 75 MHz)	S22
Figure S23. ²⁹ Si NMR spectrum of TMS-PT-BPin (CDCl ₃ , 22°C, 60 MHz)	S23
Figure S24. ¹ H NMR spectrum of TMS-PTPTP-TMS (CDCl ₃ , 67°C, 300 MHz)	S24
Figure S25. ¹³ C NMR spectrum of TMS-PTPTP-TMS (CDCl ₃ , 67°C, 75 MHz)	S25
Figure S26. ²⁹ Si NMR spectrum of TMS-PTPTP-TMS (CDCl ₃ , 67°C, 60 MHz)	S26
Figure S27. TGA of TMS-PTPTP-TMS (a) and (PTPTP)Si ₂ (2T-Hex) ₆ (b)	S27

Figure S28. DSC of TMS-PTPTP-TMS	S28			
Figure S29. DSC of (PTPTP)Si ₂ (2T-Hex) ₆	S28			
Figure S30. Absorption (a) and emission (b) spectra of TMS-2T-Hex	S29			
Figure S31. Absorption (a) and emission (b) spectra of PTPTP	S29			
Figure S32. Absorption (a) and emission (b) spectra of TMS-PTPTP-TMS	S29			
Table S1. Visualization of the frontier molecular orbitals of the NOL and structural analogs				
of its donor and acceptor constituents (isosurfaces at ± 0.015).	S30			
Figure S33. PL decay time measurements of TMS-2T-Hex in THF at 310 nm excitation	S31			
Figure S34. PL decay time measurements of PTPTP in THF at 369 nm excitation	S31			
Figure S35. PL decay time measurements of TMS-PTPTP-TMS in THF at 369 nm excitation	S32			
Figure S36. PL decay time measurements of NOL in THF at 369 nm excitation	S32			
Figure S37. PL decay time measurements of NOL in THF at 340 nm excitation	S32			
Figure S38. Comparison of PL decay time curves for POPOP and NOL in THF	S33			
Figure S39. Comparison of PL decay time curves for POPOP and NOL in toluene	S33			
Figure S40. Molecular model of optimized NOL with measured distances				
between the donors $\mathbf{2T}$ and acceptor PTPTP fragments (in Å)	S34			