# **Electronic supplementary information**

for

Optimized trade-offs between triplet emission and transparency in Pt(II) acetylides through phenylsulfonyl units for achieving good optical power limiting performances †

Miao An, Xiaogang Yan, Zhuanzhuan Tian, Jiang Zhao, Boao Liu, Feifan Dang, Xiaolong Yang, Yong Wu, Guijiang Zhou,\* Yixia Ren,\* Loujun Gao\*

#### Experimental

#### General synthetic procedure for S-0F-Br, S-1F-Br and S-3F-Br.

Under  $N_2$  atmosphere, the corresponding iodobenzene compound (1.1 equiv) and 4bromobenzenethiol (1.0 equiv) were mixed in dioxane. Then, KOH (2.0 equiv), Cul (0.05) and glycine (0.2 equiv) were added. The reaction was allowed to proceed at 110 °C for 16 h under stirring. After cooling to room temperature, water was added and the mixture was extracted three times with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was collected and dried over MgSO<sub>4</sub>. After the solvent was removed under reduced pressure, the residue was dissolved in CHCl<sub>3</sub> and mchloroperoxybenzoic acid (mCPBA, 4.5 equiv) was added slowly at 0 °C. Then, the reaction mixture was warmed to room temperature and stirred for 2 days to ensure completion of the reaction. Chloroform was added and the white precipitate was removed by filtration. The filtrate was washed with NaOH solution (*ca.* 20%) successively. The organic phase was separated and dried over MgSO<sub>4</sub>. The solvent was removedunder reduced pressure and the residue was purified by column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether as eluent. The product was obtained as white crystals.

**S-0F-Br**: (Yield: 82%). <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.93–7.91 (m, 2H), 7.80–7.78 (m, 2H), 7.63–7.48 (m, 5H); <sup>13</sup>C NMR (67.5 MHz, CDCl<sub>3</sub>): δ (ppm) 140.98, 140.53, 133.40, 132.50, 129.34, 129.09, 128.36, 127.54. FAB-MS (m/z): 296, 298 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>12</sub>H<sub>9</sub>BrO<sub>2</sub>S: C 48.50, H 3.05; found: C 48.39, H 2.89.

S-1F-Br: (Yield: 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.96–7.93 (m, 2H), 7.80–7.77 (m, 2H), 7.66~7.64 (m, 2H), 7.21–7.17 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 140.51, 132.70, 130.55, 130.45, 129.09, 128.63, 116.88, 116.65; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ (ppm) - 104.10 (s,1F). FAB-MS (m/z): 314, 316 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>12</sub>H<sub>8</sub>BrFO<sub>2</sub>S:

C 45.73, H 2.56; found: C 45.65, H 2.47.

S-3F-Br: (Yield: 76%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.78 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 6.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 136.16, 133.03, 129.55, 129.32, 113.02, 112.95, 112.85, 112.78; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ (ppm) -128.47 (d, 2F), -150.01 (t, 1F). FAB-MS (m/z): 350, 352 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>12</sub>H<sub>6</sub>BrF<sub>3</sub>O<sub>2</sub>S: C 41.05, H 1.72; found: C 40.93, H 1.68.

## General synthetic procedure for S-0F-TMS, S-1F-TMS and S-3F-TMS

To the mixture of corresponding brominated phenylsulfonyl compound (1.0 equiv),  $Pd(PPh_3)_2Cl_2$  (0.05 equiv), CuI (0.025 equiv) and the solvent Et<sub>3</sub>N, trimethylsilylacetylene (2.0 equiv) was added at room temperature. After stirring 1 h at room temperature, the reaction mixture was allowed to proceed at 70 °C for 24 h. After cooling to room temperature, the reaction mixture was concentrated under vacuum to give the crude product, which was further purified by silica gel column chromatography with  $CH_2Cl_2$ /hexane as eluent to get the pure product as white solid.

**S-0F-TMS**: (Yield: 89%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.92 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.59–7.48 (m, 5H), 0.24 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 141.31, 140.88, 133.36, 132.61, 129.36, 128.41, 127.65, 127.55 102.99, 99.02, -0.26. FAB-MS (m/z): 314 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub>SSi: C 64.93, H 5.77; found: C 64.90, H 5.73.

S-1F-TMS: (Yield: 87%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.95–7.92 (m, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 8.0 Hz, 2H), 0.24 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 140.68, 132.67, 130.52, 130.43, 128.56, 127.43, 116.79, 116.56, 102.85, 99.21, -0.30; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ (ppm) -103.81 (s, 1F). FAB-MS (m/z): 332 [M]<sup>+</sup>.

Elemental analysis calcd (%) for C<sub>17</sub>H<sub>17</sub>FO<sub>2</sub>SSi: C 61.41, H 5.15; found: C 64.38, H 5.03. **S-3F-TMS**: (Yield: 85%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.84 (d, *J* = 8.0 Hz, 2H), 7.60– 7.57 (m, 4H), 0.25 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 139.26, 132.92, 129.40, 127.71, 112.99, 112.92, 112.82, 112.75, 102.59, 100.03, -0.32; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$ (ppm) -128.68 (d, 2F), -150.29 (t, 1F). FAB-MS (m/z): 378 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>17</sub>H<sub>15</sub>F<sub>3</sub>O<sub>2</sub>SSi: C 55.42, H 4.10; found: C 55.40, H 3.97.

### General synthetic procedure for the organic ligands

To the solution of **S-0F-TMS/S-1F-TMS/S-3F-TMS** (1.0 equiv) in  $CH_2Cl_2$ , tetrabutylammonium fluoride trihydrate (1.1 equiv) was added. The reaction mixture was stirred at room temperature for 30 min and then was washed with water. The organic phase was dried over MgSO<sub>4</sub> and concentrated under vacuum. After concentration, the residue was purified by silica gel column chromatography with  $CH_2Cl_2$ /hexane as eluent as eluent to get the pure product as white solid.

**L-0F** (Yield: 93%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.94 (d, J = 7.6 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.60–7.49 (m, 5H), 3.24 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 141.46, 141.13, 133.41, 132.83, 129.37, 127.69, 127.59, 127.33, 81.83, 80.99. FAB-MS (m/z): 242 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>14</sub>H<sub>10</sub>O<sub>2</sub>S: C 69.40, H 4.16; found: C 69.28, H 4.07.

**L-1F** (Yield: 92%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.97–7.93 (m, 2H), 7.88 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.19 (t, J = 8.0 Hz, 2H), 3.25 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 141.31, 132.92, 130.59, 130.50, 127.52, 116.84, 116.61, 81.76, 81.15; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -103.64 (s, 1F). FAB-MS (m/z): 260 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>14</sub>H<sub>9</sub>FO<sub>2</sub>S: C 64.60, H 3.49; found: C 64.51, H 3.51.

**L-3F** (Yield: 91%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.88 (d, J = 8.0 Hz, 2H), 7.64 (d, J =

8.0 Hz, 2H), 7.60 (t, J = 4.0 Hz, 2H), 3.29 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 139.26, 132.92, 129.40, 127.71, 112.99, 112.92, 112.82, 112.75, 102.59, 100.03, -0.32; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -128.57 (d, 2F), -150.12 (t, 1F). FAB-MS (m/z): 296 [M]<sup>+</sup>. Elemental analysis calcd (%) for C<sub>14</sub>H<sub>7</sub>F<sub>3</sub>O<sub>2</sub>S: C 56.76, H 2.38; found: C 56.81, H 2.32.





Fig. S1 <sup>1</sup>H-NMR spectra for these Pt(II) acetylides before and after Z-scan measurement.