Electronic supplementary information (ESI)

Topological Insulator Bi₂Se₃ Nanowire/Si Heterostructure

Photodetector with Ultrahigh Responsivity and Broadband Response

Chang Liu, Hongbin Zhang,* Zheng Sun, Ke Ding, Jie Mao, Zhibin Shao, Jiansheng Jie*

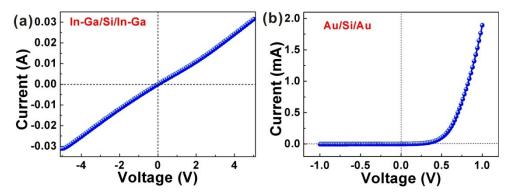


Fig. S1 I-V curves of the In-Ga/Si/In-Ga and Au/Si/Au devices.

Table. S1 Components of an individual Bi₂Se₃ NW

Element	Weight %	Atomic %	
Se	28.86	51.77	
Bi	71.13	48.22	

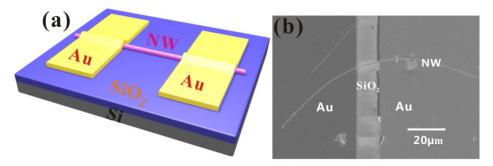


Fig. S2 (a) Schematic illustration of the Bi_2Se_3 NW based device with Au Ohmic contacts. (b) Typical SEM image of the Ohmic contact device.

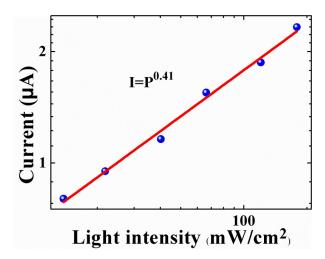
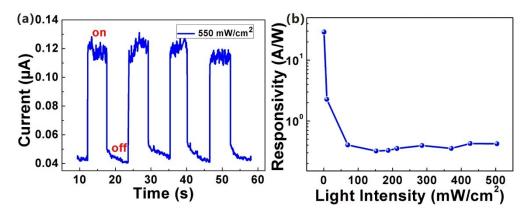




Fig. S3 (a), (b) were the schematic illustration and photoresponse of the In-Ga/Si/In-Ga device.

Fig. S4 Photocurrent of the Bi_2Se_3 NW/Si heterostructure as a function of light intensity. The curve can be fitted according to power law.

Fig. S5 (a) Photoresponse of the device measured at bias voltage of -5 V under the illumination of 1064 nm light. (b) Responsivity of the device as a function of light intensity under 1064 nm light illumination.

Table. S2 Statistics of responsivities of six devices (with number from 1-6)

Devices	1	2	3	4	5	6	
<i>R</i> (A W ⁻¹)	924.2	312.5	437.5	143.75	490.63	343.7	

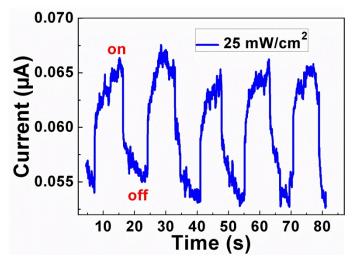
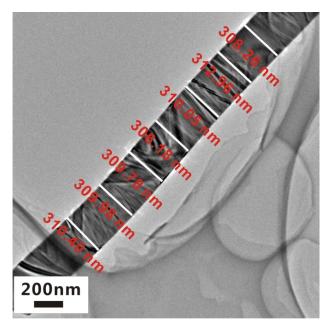



Fig. S6 Photoresponse of the devices measured under the illumination of 1310 nm light (25 mW cm⁻²). The bias voltage was fixed at -5 V.

Fig. S7 Low-resolution TEM image of a single Bi_2Se_3 NW. The diameter of the NW can be deduced to be 309.66 \pm 3.48 nm by measuring different positions in a single NW, and the mean error was less than 1.13%.

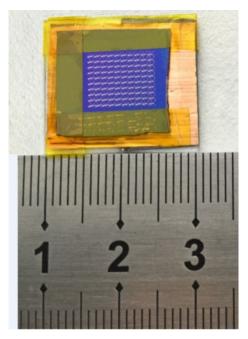


Fig. S8 Photograph of the Bi_2Se_3 NWs/Si heterostructure photodetectors, consisting of 10×10 devices in the same substrate.

Formulae's used in the study:

Work function	$\Phi_{\rm s} = hv - E_{\rm max}$
Photocurrent	I _{ph} = I _{light} - I _{dark}
On/off ratio	On/off ratio = $I_{\text{light}}/I_{\text{dark}}$
Responsivity	$R (A W^{-1}) = I_{ph}/P_{in}$
Detectivity	$D^* = (AB)^{1/2}/NEP \approx A^{1/2}R/(2qI_d)^{1/2}$
Gain	$G = R hc/(q\lambda)$

Where Φ_s = Work function (eV)

hv = the energy of the He I radiation source (eV)

*E*_{max} = maximum binding energy (eV)

 $I_{\rm ph}$ = photocurrent (µA)

 $I_{\rm d}$ = the dark current (µA)

 $R = \text{Responsivity} (A W^{-1})$

 $P_{\rm in}$ = the incident light power on the active area of the photodetector (mW cm⁻²)

D* = Detectivity (Jones)

A = the active area of the photodetector (cm²)

B = the bandgap (eV)

NEP = the noise equivalent power (W)

q = the unit charge (C)

h = the Planck's constant (J s)

c = the velocity of light (m s⁻¹)

 λ = the wavelength of illuminated light (nm)