Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Osmium-nitrido corroles as NIR indicators for oxygen sensors and triplet sensitizers for organic upconversion and singlet oxygen generation

Sergey M. Borisov,^{*,1} Abraham Alemayehu,² Abhik Ghosh^{*,2}

¹Institute of Analytical Chemistry and Food Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria

²Department of Chemistry and Center for Theoretical and Computational Chemistry UiT – The Arctic University of Norway, 9037 Tromsø, Norway

Figure S1. Absorption spectra of $Os[TpCF_3PC](N)$ in air-saturated toluene upon irradiation with 590-nm high power LED array.

Figure S2. Absorption spectra of $Os[TpOCH_3PC](N)$ in air-saturated toluene upon irradiation with 590-nm high power LED array.

Figure S3. Emission spectra nitridoosmium(VI) corroles in polystyrene under nitrogen (25 °C, λ_{exc} 590 nm).

Figure S4. Bleaching of 9,10-dimethylanthracene (0.28 mM) in air saturated EtOH:THF (9:1) solution in presence of methylene blue (13.5 μ M) upon excitation with orange light (595±5 nm; photon flux 4000 μ mol·s⁻¹·m⁻²).

Figure S5. Bleaching of 9,10-dimethylanthracene (0.28 mM) in air saturated EtOH:THF (9:1) solution in presence of Os[T*p*CF₃PC](N) (19.5 μ M) upon excitation with orange light (595±5 nm; photon flux 4000 μ mol·s⁻¹·m⁻²).

Figure S6. Bleaching of 9,10-dimethylanthracene (0.28 mM) in air saturated EtOH:THF (9:1) solution in presence of Os[TPC](N) (14.4 μ M) upon excitation with orange light (595±5 nm; photon flux 4000 μ mol·s⁻¹·m⁻²).

Figure S7. Bleaching of 9,10-dimethylanthracene (0.28 mM) in air saturated EtOH:THF (9:1) solution in presence of Os[T*p*OCH₃PC](N) (15.6 μ M) upon excitation with orange light (595±5 nm; photon flux 4000 μ mol·s⁻¹·m⁻²).

Complex	T, °C	τ ₀ ,	K_{SV}^{1} ,	k _q ,
_		μs	kPa ⁻¹ *	$Pa^{-1}cm^{-1}$
Os[TpOCH ₃ PC](N)	5	142	0.77	5.4
	25	136	0.91	6.7
	45	131	1.07	8.2
Os[TPC}(N)	5	164	0.99	6.0
	25	158	1.03	6.5
	45	152	1.28	8.4
Os[TpCF ₃ PC](N)	5	188	1.19	6.3
	25	183	1.38	7.5
	45	178	1.66	9.3

Table S1. Sensing properties of the optodes at different temperatures

*decay time Stern-Volmer plots; eq. 1; fit parameters: m = 0.08; f = 0.68 for all optodes and temperatures