Electronic Supplementary Information

Enhanced 808 nm driven Ce³⁺ doped red-emitting upcoversion nanocrystals by intercalated nanostructure

Ji-Wei Shen,*a Junliang Lu,a Jun Tu,a Xiangyuan Ouyanga and Hua Libc

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education. College of Chemistry & Materials Science, Northwest University, Xi' an 710069, People's Republic of China;

^b Institute of Analytical Science, College of Chemistry & Material Science, Northwest University, Xi'an 710069, China;

^c College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.

Fig. S1. Energy level diagrams of Nd³⁺, Yb³⁺, Ho³⁺ and Ce³⁺ ions, as well as proposed energy transfer mechanisms of Yb³⁺ sensitized 980 nm driven red-emitting UCNCs and Nd³⁺ sensitized 808 nm driven red-emitting UCNCs. Green and red emissions at ~540 nm and ~650 nm correspond to the transition ${}^{5}S_{2}/{}^{5}F_{4}\rightarrow {}^{5}I_{8}$, and ${}^{5}F_{5}\rightarrow {}^{5}I_{8}$ of Ho³⁺ ions, respectively. The enhanced red UCL and red-to-green ratio of the UCNCs by Ce³⁺ doping are mainly attributed to the cross-relaxation processes between Ho³⁺ and Ce³⁺ (CR1:Ho³⁺: ${}^{5}S_{2}/{}^{5}F_{4}$ +Ce³⁺: ${}^{2}F_{5/2}$ →Ho³⁺: ${}^{5}F_{5}$ + Ce³⁺: ${}^{2}F_{7/2}$; CR2:Ho³⁺: ${}^{5}I_{6}$ +Ce³⁺: ${}^{2}F_{5/2}$ →Ho³⁺: ${}^{5}I_{7}$ +Ce³⁺: ${}^{2}F_{7/2}$).¹⁻³

Fig. S2. Visible-near-infrared absorption spectra of NaYF₄:Yb/Ho (8/1 mol%) NCs, 10 mol% Ce^{3+} doped CSS structured UCNCs, 10 mol% Ce^{3+} doped INNC₂ and 10 mol% Ce^{3+} doped INNC₃ in cyclohexane (8 mM). The energy absorption capacity of the Nd³⁺ sensitized UCNCs was reflected by the variation in characteristic absorption bands of Nd³⁺ in the visible-near-infrared absorption spectra. The characteristic absorption bands of Nd³⁺ appeared in Nd³⁺ sensitized UCNCs. The INNC₃ showed enhanced energy absorption capacity compared with both the CSS structured UCNCs and the INNC₂.

Fig. S3. Upconversion decay curves of the as-prepared 10 mol% Ce^{3+} doped CSS structured UCNCs and 10 mol% Ce^{3+} doped INNC₂.

Fig. S4. Upconversion decay curves the as-prepared INNC₂ and INNC₃.

References

- G. Y. Chen, H. C. Liu, G. Somesfalean, H. J. Liang and Z. G. Zhang, *Nanotechnology*, 2009, 20, 385704.
- 2. W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao and R. B. Wang, *J. Mater. Chem. C*, 2014, **2**, 5327.
- 3. D. Q. Chen, L. Liu, P. Huang, M. Y. Ding, J. S. Zhong and Z. G. Ji, *J. Phys. Chem. Lett.*, 2015, **6**, 2833.