Supporting Information

1,8-Naphthalimide-Based Nonfullerene Acceptors for Wide Optical Band Gap Polymer Solar Cells with an Ultrathin Active Layer Thickness of 35 nm

Jicheng Zhang,[†] Hongmei Xiao,[†] Xuejuan Zhang,[†] Yang Wu,[†] Guangwu Li,[†] Cuihong Li,[†],* Xuebo Chen,[†] Wei Ma[†],* and Zhishan Bo[†],*

 ^t Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
 ^t State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

Corresponding Author

*E-mail: licuihong@bnu.edu.cn; zsbo@bnu.edu.cn; msewma@mail.xjtu.edu.cn

S1.1. Measurements and characterization

Unless otherwise noted, all reactions were performed under a nitrogen atmosphere and were monitored by thin layer chromatography (TLC) on silica gel plates. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 spectrometer. UV-visible absorption spectra were measured on a PerkinElmer UV-vis spectrometer model Lambda 750. Atomic force microscopy (AFM) measurements were conducted under ambient conditions using a Digital Instrument Multimode Nanoscope IIIA using the tapping mode. The thickness of the blend films was measured by a Dektak 6 M surface profilometer. XRD experiments were performed with an X' Pert PRO MPD instrument. The electrochemical behaviour of the polymers was studied using cyclic voltammetry (CHI 630A Electrochemical Analyzer) with a three-electrode electrochemical cell in a 0.1 M Bu_4NPF_6 CH₃CN solution under an atmosphere of nitrogen with a scanning rate of 0.1 V/s. A glassy carbon working electrode, a Pt wire counter electrode and an Ag/AgNO₃ (0.01 M in CH₃CN) reference electrode were used. The ferrocene/ferrocenium (Fc/Fc⁺) redox couple was used as the internal reference standard.

S1.2. Polymer Solar Cells Fabrication and Characterization

PSCs were fabricated with the device configuration of ITO/PEDOT:PSS (35 nm)/ PCDTBT-C12:Acceptor/LiF (0.7 nm)/Al (100 nm). The conductivity of ITO is 15 Ω. PEDOT:PSS (Baytron Al 4083 from H.C. Starck) was filtered with a 0.45 mm polyvinylidene difluoride (PVDF) film before use. A PEDOT:PSS thin layer was spin-coated on top of the cleaned ITO substrate at 3000 rpm/s for 50 s and was dried at 130 °C for 20 min on a hotplate. The thickness of the PEDOT:PSS layer was approximately 35 nm. A mixture of **PCDTBT-C12** and acceptor in 1,2-dichlorobenzene (DCB) was stirred at 90 °C overnight to ensure sufficient dissolution, and the blend solution was spin-coated onto the PEDOT:PSS layer to form the active layer. The concentrations of the blend of **PCDTBT-C12** and small molecules were all 25 mg/mL. To fabricate a thick active layer of **PCDTBT-C12:PC71BM**, a concentration of 25 mg/mL for the **PCDTBT-C12** and **PC71BM** blend was used. A dilute solution with a concentration of 10 mg/mL was used for the **PCDTBT-C12**, and PC₇₁BM blend was used to achieve a thin active layer. A top electrode of 0.7 nm LiF and 100 nm of aluminium were thermally evaporated at a pressure of 10⁻⁴ Pa through a shadow mask. On one substrate, five cells with an effective area of 0.04 cm² each were fabricated. Current-voltage (I-V) and external quantum efficiency (EQE) measurements were conducted in air without encapsulation. The I-V characteristics were recorded at room temperature using an Agilent B2902A Source Meter under the illumination of an AM1.5G AAA class solar simulator (model XES-301S, SAN-EI) with an intensity of 100 mW cm⁻², and the white light intensity was calibrated with a standard single-crystal Si solar cell.

S1.3. Space-Charge Limited Current Measurement

of Hole-only devices with а structure **ITO/PEDOT:PSS** (35 nm)/PCDTBT-C12:Acceptor/Au (100 nm) and electron-only devices with a configuration of FTO/PCDTBT-C12:Acceptor/Al (100 nm) were fabricated. FTO substrates were prepared by etching the commercial FTO substrates with HCl and Zn powders. The blend solution of PCDTBT-C12 and acceptors in DCB was spin-coated onto the PEDOT:PSS layer to form the active layer, like PSC devices, and 100 nm of Au was thermally evaporated at a pressure of 10^{-4} Pa through a shadow mask. For electron-only devices, the blend solution of PCDTBT-C12 and acceptors in DCB was spin-coated on the clean FTO substrates to form an active layer. Al electrodes (100 nm) were vacuum-deposited on the polymer thin films. Dark J-V curves of the hole-only devices and electron-only devices were measured by the space-charge limited current (SCLC) method. The dark J-V curves of the devices were fitted using the Mott–Gurney equation: $J = 9\varepsilon_0\varepsilon_r\mu V^2/8L^3$, where J is the space-charge limited current, ε_0 is the vacuum permittivity, ε_r is the permittivity of the active layer, μ is the hole mobility or the electron mobility, and L is the thickness of the active layer.

Figure S1. XRD images of NI-A-C4, NI-A-C6 and NI-A-C8 films with a film thickness of 300 nm.

Table S1. M_n , M_w and polydispersity indexes (PDI) of **PCDTBT-C12**.

Polymer	$M_{\rm n}({\rm kg/mol})^{\rm a)}$	$M_{\rm w} ({\rm kg/mol})^{\rm a)}$	PDI
PCDTBT-C12	66.8	93.1	1.39

^a $M_{\rm n}$, $M_{\rm w}$ and PDI of **PCDTBT-C12** were measured by gel permeation chromatography (GPC) at 80 °C using chlorobenzene as an eluent and narrowly distributed polystyrenes as the calibration standards.

Table S2. Summary of the photovoltaic properties of **PCDTBT-C12:PC₇₁BM-**based optimized devices with different film thickness.

Active layer	RPM	$V_{ m oc}$	$J_{ m sc}$	E E		Thickness
		(V)	$(mA cm^{-2})$	FF	PCE (%)	(nm)
	1100	0.85	7.48	0.41	2.62	144
	1600	0.86	8.39	0.47	3.39	121
PCDTBT-C12:PC ₇₁ BM	2100	0.88	8.77	0.52	4.01	97
With 0.5% 1-CN	2600	0.89	8.65	0.53	4.08	75
	3100	0.88	8.36	0.55	4.04	72
	3600	0.88	8.28	0.55	4.00	69

Devices	Thickness (nm)	Additive	$\mu_h ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	$\mu_e ({ m cm}^2{ m V}^{-1}{ m s}^{-1})$
PCDTBT-C12:NI-A-C4	37	no	5.92×10 ⁻⁷	5.18×10 ⁻⁷
PCDTBT-C12:NI-A-C6	32	no	2.32×10 ⁻⁷	1.07×10 ⁻⁸
	31	0.5% 1-CN	2.15×10 ⁻⁷	3.05×10 ⁻⁷
PCDTBT-C12:NI-A-C8	34	no	1.26×10 ⁻⁷	6.45×10 ⁻⁹
	32	0.5% 1-CN	2.01×10 ⁻⁷	2.25×10 ⁻⁸
PCDTBT-C12:PCBM	36	0.5% 1-CN	7.57×10 ⁻⁶	3.78×10 ⁻⁷
	74	0.5% 1-CN	8.27×10 ⁻⁶	1.73×10 ⁻⁶

Table S3. Summary of the μ_e and μ_h of the blend of **PCDTBT-C12:Acceptor** without and with 0.5% as the additive.

Figure S2. Three-dimensional AFM images (5 \times 5 µm) of **PCDTBT-C12:SMA** blend films without and with 0.5% 1-CN as the additive and **PCDTBT-C12:PC₇₁BM** optimized blend films. The height scale bar of (a), (b), (b1), (c) and (c1) is 200 nm; the height scale bar of (a1) is 5 nm.

Figure S3. AFM height images and three-dimensional images $(5 \times 5 \ \mu m)$ of **PCDTBT-C12:PC₇₁BM** blend films without 1-CN as the additive with a film thickness of 70 nm and **PCDTBT-C12:PC₇₁BM** blend films with 1-CN as the additive with a film thickness of 30 nm. The height scale bar is 5 nm.

Figure S4. R-SoXS profiles in log scale for (a) **PCDTBT-C12:NI-A-C6** and (b) **PCDTBT-C12:NI-A-C8** blend films with the energy of 270 eV and 286.8 eV.