Supporting Information

Large-scale Synthesize and Screen Printing of Upconversion Hexagonal-phase NaYF₄: Yb³⁺, Tm³⁺/Er³⁺/Eu³⁺ Plates for Security Application

Weijing Yao^{1, #}, Qingyong Tian^{1, 2#}, Jun Liu¹, Zhaohui Wu¹, Shuyuan Cui¹, Jing Ding¹, Zhigao Dai¹,

Wei Wu^{1,}*

¹ Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and

Packaging, Wuhan University, Wuhan 430072, P. R. China

² Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of

Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

These authors contributed equally.

weiwu@whu.edu.cn (W. Wu)

^{*}To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail:

Table S1 The reaction parameters of the NaYF₄: 18% Yb³⁺, 2% Tm³⁺ (UCMPs) and corresponding

Sample	Process time /h	TSC /mmol	NH4F /mmol	NaCl /mmol	OA:EG /ml	Morphology	average dimension (L/T)/ μm	Aspect ratios ^a
S1	6	2	6	2.88	10:5	hexagonal microplates	1.127/0.883	1.27
S2	0.5	2	6	2.88	10:5	nanoparticles	/	/
S3	1	2	6	2.88	10:5	nanoparticles + hexagonal microplates	/	/
S4	2	2	6	2.88	10:5	hexagonal microplates	0.660/0.245	2.69
S5	12	2	6	2.88	10:5	hexagonal microplates	1.125/0.888	1.26
S6	6	1	6	2.88	10:5	irregular microprisms	11.599/4.067	2.85
S7	6	4	6	2.88	10:5	hexagonal microplates	0.774/0.200	3.87
S 8	6	2	4	2.88	10:5	nanoparticles	/	/
S9	6	2	12	2.88	10:5	hexagonal microprisms	1.437/1.670	0.86
S10	6	2	6	0	10:5	hexagonal microplates	1.331/1.079	1.23
S11	6	2	6	1	10:5	hexagonal microplates	1.198/0.917	1.31
S12	6	2	6	2.88	7.5:7.5	hexagonal microplates	1.200/0.656	1.83
S13	6	2	6	2.88	5:10	hexagonal microplates	0.921/0.482	1.91

morphology and average dimension.

^a determined that the aspect ratio is equal to the average length divided by the average thickness.

Ink viscosity and tension

Firstly, the kinematic viscosity of the ink was measured using a 0.4-0.5 mm diameter Capillary Tube Viscometer. We can get the kinematic viscosity through the following formula (eg. (1)). Then, viscosity of UCMPs inks is calculated *via* the conversion formula (eg. (2)). Here, the test temperature of the experiments is 20 °C.

$$v = c * t$$
 eg.(1)

$$\eta = \upsilon * \rho$$
 eg.(2)

where v is the kinematic viscosity of UCMPs inks (mm²/s), c is the viscometer constant (0.004471 mm²/s²), t is the time of certain volume liquid through capillary (s), η and ρ are the viscosity (mPa•s) and density of UCMPs inks (1.13 g/cm³), respectively. Then, the experimental parameters of viscosity test are presented in **Table R1**. The calculated viscosity of UCMPs inks is 113.11 mPa•s. The surface tension of PET is 47 mN/m, and the measured surface tension of UCMPs inks is 32

mN/m. The surface tension of substrate is higher than the ink, which is beneficial to the printing.

 Table S2 The experimental parameters of viscosity test.

t (s)	$c (\mathrm{mm^2/s^2})$	<i>v</i> (mm ² /s)	ho (g/cm ³)	η (mPa•s)
22388.00	0.004471	100.10	1.13	113.11
		X MALL		

Figure S1 SEM images of NaYF₄: Yb³⁺, Tm³⁺ UCMPs under different reaction conditions. (a) 1 mmol and (b) 4 mmol TSC, (c) 4 mmol and (d) 12 mmol NH₄F, (e) 0 mmol and (f) 1 mmol NaCl, (g) 7.5: 7.5 mL and (h) 5: 10 mL OA: EG, respectively.

Figure S2 Sizes distribution statistics of NaYF₄: Yb³⁺, Tm³⁺ UCMPs under different reaction conditions.(a) 6 h, (b) 2 h, (c) 12 h; (d) 4 mmol TSC; (e) 12 mmol NH₄F; (f) and (g) 0 mmol, 1 mmol NaCl; (h) and (i) 7.5: 7.5 mL, 5: 10 mL OA: EG, respectively.

The energy transition formulas of Tm³⁺, Er³⁺, Eu³⁺and Yb³⁺ dopant ions.

$${}^{2}F_{7/2}(Yb^{3+}) + hv(980nm) \longrightarrow {}^{2}F_{5/2}(Yb^{3+})$$
 (eg.1)

$${}^{2}F_{5/2}(Yb^{3+}) + {}^{3}H_{6}(Tm^{3+}) \xrightarrow{ET_{a}} {}^{2}F_{7/2}(Yb^{3+}) + {}^{3}H_{5}(Tm^{3+})$$
(eg.2)

$${}^{3}H_{5}(Tm^{3+}) \rightarrow {}^{3}F_{4}(Tm^{3+}) + {}^{2}F_{5/2}(Yb^{3+}) \xrightarrow{ETb} {}^{3}F_{2}(Tm^{3+})$$
 (eg.3)

$${}^{3}F_{2}(Tm^{3+}) \rightarrow {}^{3}F_{3}(Tm^{3+}) \rightarrow {}^{3}H_{6}(Tm^{3+}) + h\nu(696nm)$$
 (eg.4)

$${}^{3}F_{3}(Tm^{3+}) \rightarrow {}^{3}H_{4}(Tm^{3+}) + {}^{2}F_{5/2}(Yb^{3+}) \xrightarrow{ETc} {}^{1}G_{4}(Tm^{3+})$$
 (eg.5)

$${}^{1}G_{4}(Tm^{3+}) \rightarrow {}^{3}H_{6}(Tm^{3+}) + h\nu(475nm)$$
 (eg.6)

$${}^{1}G_{4}(Tm^{3+}) \rightarrow {}^{3}F_{4}(Tm^{3+}) + h\nu(648nm)$$
 (eg.7)

$${}^{2}F_{5/2}(Yb^{3+}) + {}^{2}I_{15/2}(Er^{3+}) \xrightarrow{ET_{a}} {}^{2}F_{7/2}(Yb^{3+}) + {}^{2}I_{11/2}(Er^{3+})$$
(eg.8)

$${}^{2}F_{5/2}(Yb^{3+}) + {}^{2}I_{11/2}(Er^{3+}) \xrightarrow{ET_{c}} {}^{2}F_{7/2}(Yb^{3+}) + {}^{4}F_{7/2}(Er^{3+})$$
(eg.9)

$${}^{2}F_{7/2}(Er^{3+}) \rightarrow {}^{2}H_{11/2}(Er^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+}) + hv(522nm)$$
 (eg.10)

$${}^{2}F_{7/2}(Er^{3+}) \rightarrow {}^{2}S_{3/2}(Er^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+}) + h\nu(542nm)$$
 (eg.11)

$${}^{2}F_{7/2}(Er^{3+}) \rightarrow {}^{2}F_{9/2}(Er^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+}) + h\nu(656nm)$$
 (eg.12)

$${}^{2}F_{5/2}(Yb^{3+}) + {}^{7}F_{0}(Eu^{3+}) \xrightarrow{CU} {}^{2}F_{7/2}(Yb^{3+}) + {}^{5}D_{1}(Eu^{3+})$$
(eg.13)

$${}^{5}D_{1}(Eu^{3+}) \rightarrow {}^{7}F_{0}(Eu^{3+}) + h\nu(523nm)$$
 (eg.14)

$${}^{5}D_{1}(Eu^{3+}) \rightarrow {}^{5}D_{0}(Eu^{3+}) \rightarrow {}^{7}F_{1}(Eu^{3+}) + h\nu(592nm)$$
 (eg.15)

$${}^{5}D_{0}(Eu^{3+}) \rightarrow {}^{7}F_{2}(Eu^{3+}) + h\nu(615nm)$$
 (eg.16)

$${}^{5}D_{1}(Eu^{3+}) \rightarrow {}^{5}D_{4}(Eu^{3+}) \rightarrow {}^{7}F_{2}(Eu^{3+}) + hv(656nm)$$
 (eg.17)

$${}^{5}D_{4}(Eu^{3+}) \rightarrow {}^{7}F_{5}(Eu^{3+}) + h\nu(546nm)$$
 (eg.18)

$${}^{5}D_{4}(Eu^{3+}) \rightarrow {}^{7}F_{6}(Eu^{3+}) + hv(475nm)$$
 (eg.19)

Figure S3 The image of screen printing plate.