Electronic Supporting Information

Solution-processed OLEDs Based on Phosphorescent PtAu₂ Complexes with Phenothiazine-functionalized Acetylides

Xian-Chong Zeng,^{a,b} Jin-Yun Wang,^a Liang-Jin Xu,^a Hui-Min Wen^{*,a} and Zhong-Ning Chen^{*a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: czn@fjirsm.ac.cn.

^b College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.

empirical formula	$C_{107}H_{88}Au_2Cl_8N_2O_8P_6PtS_2$
formula weight	2652.36
crystal system	triclinic
space group	$P \overline{1}$
<i>a</i> , Å	12.7978(1)
<i>b</i> , Å	14.9854(3)
<i>c</i> , Å	16.8833(3)
α, deg	84.385(8)
β , deg	74.318(8)
γ, deg	70.229(7)
<i>V</i> , Å ³	2933.52(8)
Ζ	1
$ ho_{ m calcd}~ m g/cm^{-3}$	1.501
μ , mm ⁻¹	4.034
radiation $(\lambda, \text{\AA})$	0.71073
temp,(K)	293(2)
R1 (F _o) ^a	0.0489
$wR2 (F_o^2)^b$	0.1440
GOF	0.995
$r^{a} R1 = \Sigma F_{o} - F_{c} / \Sigma F_{o}$	^b wR2 = $\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)]^{1/2}$

Table S1. Crystallographic data for 2·3CH2Cl2.

orbital energy			MO contribution (%)							
	(eV)	Pt (s/p	/d)	Au (s/p/d)	dpmp	C≡C-PTZ-Et			
LUMO	+7 -1.3	7	13.58 (0/100/0)		9.41 (34/51/15)	63.07	13.94			
LUMO	+4 -1.4	9	3.48 (0/100/0)		3.31 (29/37/34)	89.96	3.25			
LUMO	+2 -1.6	4	2.17 (0	0/100/0)	10.70 (21/64/15)	83.69	3.44			
LUMO	-2.5	2.50 14.10		(0/100/0)	22.87 (61/30/9)	53.93	9.04			
HOMC	-5.4	7	5.29 (3	5/0/95)	0.59 (55/20/25)	1.27	92.85			
HOMC)-2 -6 .5	3	13.70	(3/0/97)	2.41 (58/7/35)	3.27	80.61			
HOMC)-3 -6.6	5	34.22	(22/0/78)	38.58 (36/10/54)	25.58	1.63			
states	<i>E</i> , nm (e	V) 0	S. transition (Contrib.)		Contrib.)	assignment	exp. (nm)			
S_1	509 (2.44) 0.510		.5101	HOMO→LUMO (97%)		¹ LLCT/ ¹ LMCT	479			
S ₄	S ₄ 374 (3.32) 0.2143		.2143	HOMO→LUMO+2 (57%)		¹ LLCT/ ¹ LMCT				
S_5	370 (3.35) 0.4991		HOMO-3→LUMO (16%) HOMO-3→LUMO (71%)		¹ MC/ ¹ MLC ¹ / ¹ II ¹ MC/ ¹ MLCT/ ¹ II	382				
S_7	365 (3.40	0) 0	.313	HOMO \rightarrow L HOMO-2 \rightarrow	UMO+2 (15%) LUMO (74%)	¹ LLCT/ ¹ LMCT ¹ LLCT/ ¹ LMCT/ ¹ MC/ ¹ MLCT/ ¹ U	¹ MC			

Table S2. The partial molecular orbital compositions (%) and the absorption transitions for complex 1 in CH_2Cl_2 media calculated by TD-DFT method at the PBE1PBE level.

Table S3. The partial molecular orbital compositions (%) and the emission transition for complex 1 in CH₂Cl₂ media calculated by TD-DFT method at the PBE1PBE level.

orbital	energy (e	eV)		MO contribution (%)						
			Pt $(s/p/d)$ Au $(s/p/d)$		dpmp		C≡C-PTZ-Et			
LUMO	-2.72		16.07 (0/100/0)	25.51 (68/2	22/10)	49.85	8.57			
НОМО	-5.31		4.57 (2/0/98)	0.57 (54/24/23)		1.18	93.69			
states	<i>E</i> , nm (eV)	O.S.	transition (contra	ib.)	assignr	nent	exp. (nm)			
T ₁	672 (1.84)	0.0000	HOMO→LUM	O (83%) ³ LLCT/ ⁴		/ ³ LMCT	683			

orbital		energy (eV)	MO contribution (%)						
				Pt (s/p/d)		Au (s/p/d)		dpmp	C≡C	C ₆ H ₄ -PTZ
LUMO)+7	-1.45		10.84 (0/97/3)		8.81 (42/42/16)		63.30	17.0	5
LUMO	+4	-1.55		4.6	1 (6/55/39)	5.17 (34/44/22))	85.17	5.05	
LUMO)	-2.61	14		96 (0/99/0)	24.06 (62/30/9)		50.25	10.7	3
HOMC)	-5.71	1		0 (30/7/63)	0.13 (73/15/12)		0.09	99.5	8
HOMC)-2	-6.52		25.	77 (10/0/90)	2.40 (57/17/26))	3.17	68.6	6
HOMC)-3	-6.72		34.	02 (22/0/78)	38.97 (37/10/53)		25.92	1.09	
states	<i>E</i> , r	ım (eV)	O.S.	O.S. transition (ontrib.) as		assignment		exp. (nm)
S_1	460	460 (2.70) 0.039		92	HOMO→LUMO (97%)		¹ LLCT/ ¹ LMCT/ ¹ IL			448
S_3	393 (3.15) 0.49		0.49	82	HOMO-2→LU	JMO (96%) ¹ LI		¹ LLCT/ ¹ MC/ ¹ LMCT		382
S ₄	374 (3.32) 0.650		67	HOMO-3→LUMO (98%)		¹ MC/ ¹ MLCT/ ¹ IL				

Table S4. The partial molecular orbital compositions (%) and the absorption transitions for complex 2 in CH_2Cl_2 media calculated by TD-DFT method at the PBE1PBE level.

Table S5. The partial molecular orbital compositions (%) and the emission transition for complex **2** in CH_2Cl_2 media calculated by TD-DFT method at the PBE1PBE level.

energy (e	eV)	MO contribution (%)						
	Pt	(s/p/d)	Au (s/p/d)	Au (s/p/d)		C≡CC ₆ H ₄ -PTZ		
-2.88	16	.50 (0/100/0)	25.87 (67/22/10)		48.12	9.51		
-5.52	0.1	0 (83/2/15)	0.07 (90/9/1)		0.06	99.76		
<i>E</i> , nm (eV)	O.S.	transition (co	ntrib.)	assig	nment	exp. (nm)		
610 (2.03)	0.0000	HOMO→LU	MO (95%) ³ LL0		CT/ ³ LMCT	572		
	energy (6 -2.88 -5.52 <i>E</i> , nm (eV) 610 (2.03)	energy (eV) Pt -2.88 16 -5.52 0.1 <i>E</i> , nm (eV) O.S. 610 (2.03) 0.0000	energy (eV) Pt (s/p/d) -2.88 16.50 (0/100/0) -5.52 0.10 (83/2/15) E, nm (eV) O.S. transition (co 610 (2.03) 0.0000 HOMO→LU	energy (eV) MO corr Pt (s/p/d) Au (s/p/d) -2.88 $16.50 (0/100/0)$ $25.87 (67/22)$ -5.52 $0.10 (83/2/15)$ $0.07 (90/9/1)$ E, nm (eV) O.S. transition (corrib.) 610 (2.03) 0.0000 HOMO→LUHO (95%)	energy (eV) MO contribution Pt (s/p/d) Au (s/p/d) -2.88 $16.50 (0/100/0)$ $25.87 (67/22/10)$ -5.52 $0.10 (83/2/15)$ $0.07 (90/9/1)$ E, nm (eV) O.S. transition (contrib.) assigned assigned assigned as a set of the term of the term of term o	energy (eV) MO contribution (%) Pt (s/p/d) Au (s/p/d) dpmp -2.88 $16.50 (0/100/0)$ $25.87 (67/22/10)$ 48.12 -5.52 $0.10 (83/2/15)$ $0.07 (90/9/1)$ 0.06 E, nm (eV) O.S. transition (contrib.) assignment 610 (2.03) 0.0000 HOMO→LUVG (95%) $^3LLCT/^3LMCT$		

					T	<u>a</u> r	DE	F OF ⁴	Forh
dopant	host	doping	$\lambda_{ m EL}$	Von	L_{\max}	CE_{\max}	PE_{max}	EQE^{a}	EQE^{v}
		(%)	(nm)	(V)	(cd m ⁻²)	$(cd A^{-1})$	(lm W ⁻¹)	(%)	(%)
1	ТАРС	8	595	5.60	1402	14.4	5.3	6.7	2.1
	TAPC : OXD-7	5	(05	5.05	6263	16.4	5.8	7.6	7.2
1	(48% : 47%)	3	003						
1	TAPC : OXD-7	8	605	4.50	10446	35.4	16.8	18.7	16.9
	(46% : 46%)								
	TCTA : OXD-7	8	606	4.85	8594	25.8	12.0	13.1	11.8
1	(46% : 46%)								
1	mCP : OXD-7	8	605	5.65	3112	3.7	1.4	2.0	1.7
1	(46% : 46%)								
2	TCTA : OXD-7	Q	568	4.95	8975	21.7	9.7	8.0	6.9
	(46% : 46%)	8							
2	TAPC : OXD-7	0	569	4.60	3940	20.0	10.2	7.1	5.6
	(46% : 46%)	8	308						

 Table S6. Optimization of electroluminescent performance of OLEDs based on complex 1.

^{*a*} The highest external quantum efficiency. ^{*b*} External quantum efficiency at brightness of 1000 cd m⁻².

Figure S1. The ESI-MS of complex 1.

Figure S2. The ESI-MS of complex 2.

Figure S3. The ³¹P NMR spectrum of complex 1.

Figure S4. The ³¹P NMR spectrum of complex 2.

Figure S5. Plots of thermogravimetric analysis for complexes 1 and 2 in temperature range 25-600 °C.

Figure S6. The emission spectra of complexes 1 and 2 in powder state.

Figure S7. The HOMO and LUMO plots (isovalue = 0.025) of complexes **1** and **2** in the triplet states from TD-DFT studies

Figure S8. (a) Current density-voltage-luminance (J-V-L) characteristics. (b) Current efficiency/external quantum efficiency *vs* luminance for the device of complex **1** using 46% TCTA and 46% OXD-7 as a blended host.

Figure S9. (a) Current density-voltage-luminance (J-V-L) characteristics. (b) Current efficiency\external quantum efficiency *vs* luminance for the device of complex **2** using 46% TAPC and 46% OXD-7 as a blended host.