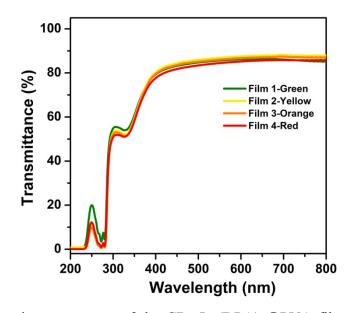
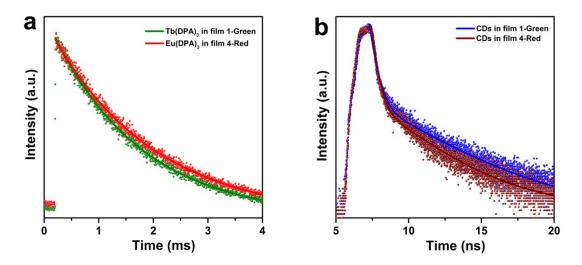
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information (ESI)

for


UV light-switchable transparent polymer films and invisible luminescent inks based on carbon dots and lanthanide complexes

Yu Wang,^a Klára Čépe^a and Radek Zbořil^{a,*}


^a Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.

*Corresponding author: radek.zboril@upol.cz

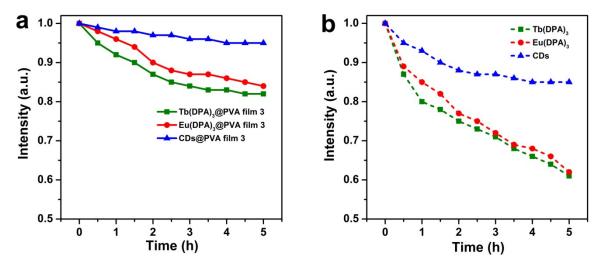

Number of pages: 3 Number of figures: 3

Fig. S1. UV/vis transmittance spectra of the CDs-Ln(DPA)₃@PVA film samples 1-4 with the thickness of 0.5 mm.

Fig. S2. (a) Decay curves of Tb(DPA)₃ in film 1-Green (green line, $\lambda_{ex} = 254$ nm, $\lambda_{monitored} = 544$ nm) and Eu(DPA)₃ in film 4-Red (red line, $\lambda_{ex} = 254$ nm, $\lambda_{monitored} = 616$ nm), fitted according to the single-exponential function ($I = I_0 + A\exp[-(t-t_0)/\tau]$). (b) Decay curves at 406 nm excitation for CDs in film 1-Green (blue line) and film 4-Red (wine line) probed at 420 nm, respectively, fitted according to the two-exponential function ($I = A_1 \exp[-t/\tau_1] + A_2 \exp[-t/\tau_2]$).

Fig. S3. (a) Photostability of CDs-Ln(DPA)₃@PVA film 3-Orange under UV light irradiation for 5 h at 254 nm for Ln(DPA)₃ and 365 nm for CDs. Changes in PL emission intensity for Tb(DPA)₃ ($\lambda_{em} = 544$ nm), Eu(DPA)₃ ($\lambda_{em} = 616$ nm), and CDs ($\lambda_{em} = 420$ nm). (b) Photostability of the drop-casting film under UV light irradiation for 5 h at 254 nm for Ln(DPA)₃ and 365 nm for CDs. Changes in PL emission intensity for Tb(DPA)₃ ($\lambda_{em} = 544$ nm), Eu(DPA)₃ ($\lambda_{em} = 616$ nm), and CDs ($\lambda_{em} = 420$ nm). Eu(DPA)₃ ($\lambda_{em} = 616$ nm), and CDs ($\lambda_{em} = 420$ nm).