Photo-controllable Third-Order Nonlinear Optical (NLO) Switch

based on Rhodamine B Salicylaldehyde Hydrazone metal Complex

Qi Feng,¹ Yuanyuan Li,² Guang Shi,³ Lili Wang,¹ Wenjing Zhang,¹ Kai Li,^{*,1} Hongwei Hou^{*,1} and Yinglin Song^{*,3}

1 College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R. China

2 School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, P. R. China

3 Department of Applied Physics, Harbin Institute of Technology, Harbin 150001, P.R. China

*Correspondence and requests for materials should be addressed to K. L. (likai@zzu.edu.cn), H. W. H. (houhongw@zzu.edu.cn) or (ylsong@hit.edu.cn.).

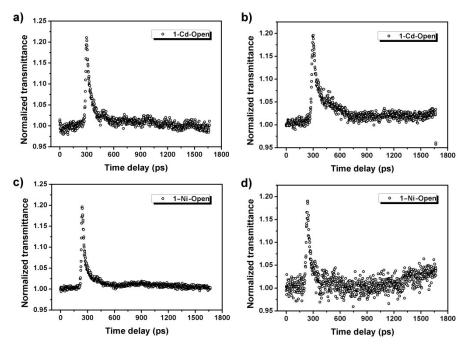
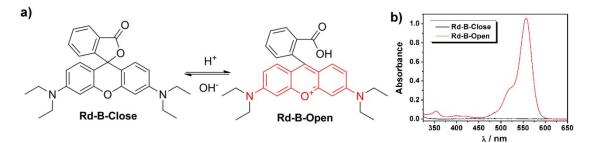



Figure S1. a), c) Open aperture and b), d) close aperture PO-pump-probe results of 1-Cd-Open and 1-Ni-Open. Conditions: $[1-Cd] = [1-Ni] = 5 \times 10^{-5} \text{ mol/L in THF solution}$, 2 mm quartz cells.

Figure S2. a) The known tautomerism of **Rd-B** in the presence of acid or base and b) the corresponding absorption spectra. Conditions: $[\mathbf{Rd-B}] = 5 \times 10^{-5} \text{ mol/L}$ in THF solution, 2 mm quartz cells.

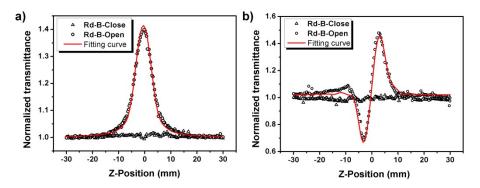
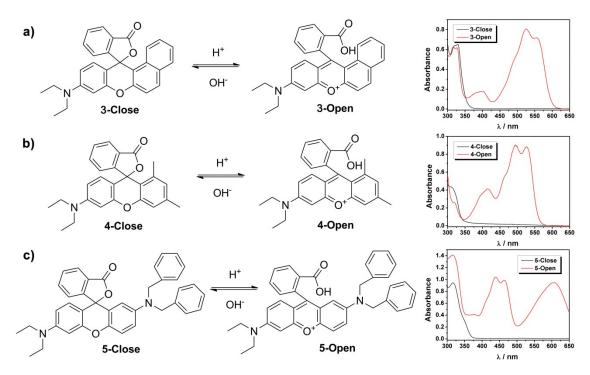
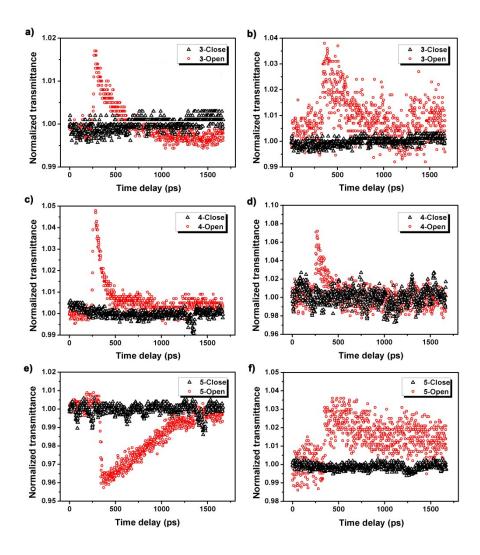




Figure S3. a) open-aperture and b) closed-aperture top-hat Z-scan results of Rd-B-Close and Rd-B-Open. Conditions: $[Rd-B] = 5 \times 10^{-5} \text{ mol/L in THF solution, 2 mm quartz cells.}$

Figure S4. The known tautomerism and corresponding absorption spectra of **3-5** in the presence of acid or base. Conditions: $[3] = 5 \times 10^{-4} \text{ mol/L}$, $[4] = 5 \times 10^{-4} \text{ mol/L}$, $[5] = 5 \times 10^{-4} \text{ mol/L}$ in THF solution, 2 mm quartz cells. The conjugations of **3-5** are adjusted by the addition of TFA and TEA.

Figure S5. a), c) and e) open-aperture and b), d) and f) close-aperture PO-pump-probe results of **3-5**. Conditions: $[3] = 5 \times 10^{-4} \text{ mol/L}$, $[4] = 5 \times 10^{-4} \text{ mol/L}$, $[5] = 5 \times 10^{-4} \text{ mol/L}$ in THF solution, 2 mm quartz cells. The conjugations of **3-5** are adjusted by the addition of TFA and TEA.

State	Energy (ev)	Oscillator strength	Major MO \rightarrow MO contributions (%)				
S ₁	3.0042	1.0011	$HOMO \rightarrow LUMO (100)$				
S_2	3.6957	0.0057	HOMO-2 \rightarrow LUMO (20) HOMO-1 \rightarrow LUMO (80)				
S ₃	4.3915	0.2010	HOMO-2 \rightarrow LUMO (69) HOMO-1 \rightarrow LUMO (20) HOMO \rightarrow LUMO+2 (8) HOMO \rightarrow LUMO+4 (3)				
S_4	4.5199	0.0027	HOMO-4 \rightarrow LUMO (3) HOMO-3 \rightarrow LUMO (97)				
S ₅	4.7084	0.0011	HOMO-5 \rightarrow LUMO (65) HOMO-4 \rightarrow LUMO (22) HOMO-1 \rightarrow LUMO+2 (5) HOMO \rightarrow LUMO+5 (8)				
S ₆	4.7888	0.0585	HOMO-2 \rightarrow LUMO (3) HOMO \rightarrow LUMO+1 (97)				

Table S1. Values of energies, oscillator strengths and dominant contributions of the respective molecular orbitals of **Rd-B-Open** for $S_0 \rightarrow S_n$.

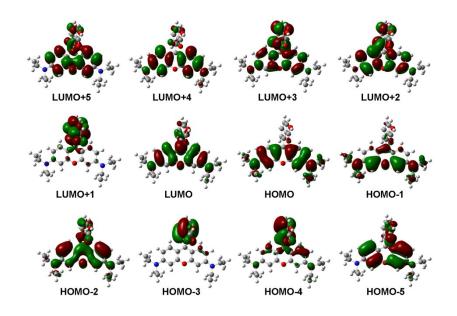


Figure S6. Calculated orbital energy diagram of Rd-B-Open.

State	Energy (ev)	Oscillator strength	Major MO \rightarrow MO contributions (%) HOMO \rightarrow LUMO (100)				
S_1	2.3705	0.0141					
S_2	2.9062	0.9184	HOMO \rightarrow LUMO+1 (94) HOMO \rightarrow LUMO+2 (6)				
S ₃	2.9859	0.1189	HOMO-7 \rightarrow LUMO (32) HOMO-3 \rightarrow LUMO (63) HOMO-2 \rightarrow LUMO (5)				
S_4	3.3840	0.0250	HOMO-7 \rightarrow LUMO (3) HOMO-1 \rightarrow LUMO (91) HOMO-1 \rightarrow LUMO+1 (6)				
S ₅	3.6346	0.0171	HOMO-2 \rightarrow LUMO (3) HOMO-2 \rightarrow LUMO+1 (17) HOMO-1 \rightarrow LUMO (5) HOMO-1 \rightarrow LUMO+1 (70) HOMO-1 \rightarrow LUMO+2 (5)				
S ₆	3.6957	0.1314	HOMO-9 \rightarrow LUMO (18) HOMO-7 \rightarrow LUMO (12) HOMO-2 \rightarrow LUMO (12) HOMO \rightarrow LUMO+1 (4) HOMO \rightarrow LUMO+2 (51) HOMO \rightarrow LUMO+3 (3)				

Table S2. Values of energies, oscillator strengths and dominant contributions of the respective molecular orbitals of **1-Zn-Open** for $S_0 \rightarrow S_n$.

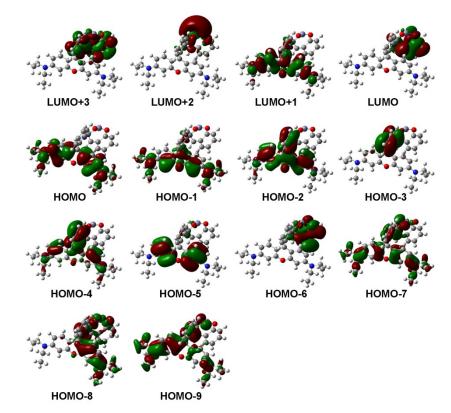


Figure S7. Calculated orbital energy diagram of 1-Zn-Open.

Table S3. The influence of different wavelength light to the color change of 1-Zn.^[a]

Wavelength/nm	365	400	425	450	475	500	550	600	650
Color change of 1-Zn	Yes	Yes	Yes	Yes	No	No	No	No	No

^[a] Light of different wavelengths are produced by a CEL-HXF300 xenon light source with different optical filters.