Supporting Information

Stretchable and Conductive Polymer Films for High-Performance Electromagnetic Interference Shielding

Pengcheng Li,^{$\dagger a$} Donghe Du, ^{$\dagger a$} Lin Guo,^b Yongxin Guo^b and Jianyong Ouyang^{*a}

^{*a*} Department of Materials Science & Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574. E-mail: mseoj@nus.edu.sg

^b Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576.

Corresponding Author

*E-mail: <u>mseoj@nus.edu.sg</u> (Jianyong Ouyang)

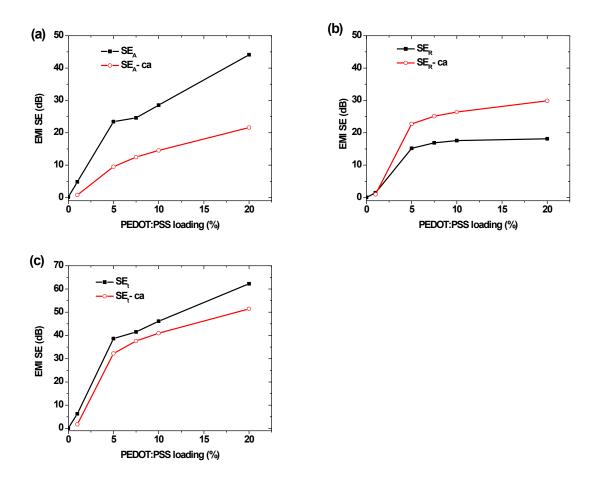


Figure S1. Comparison between EMI SE data experimentally obtained and theoretically calculated (ca). (a) SE_A and SE_A-ca, (b) SE_R and SE_R-ca, (c) SE_t and SE_t-ca.

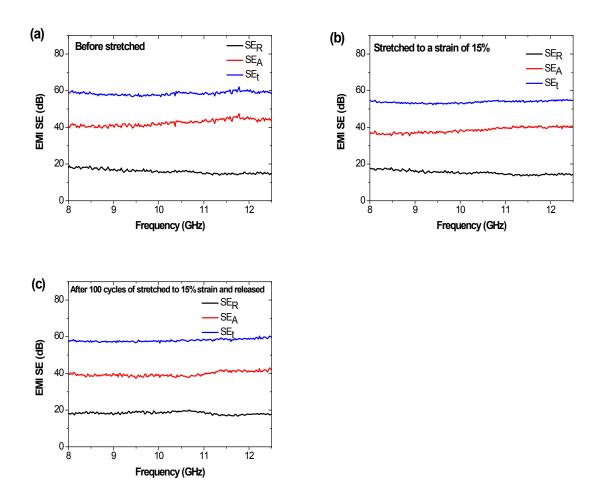


Figure S2. SE_t, SE_A and SE_R of a 20wt% PEDOT:PSS/WPU film before stretched, stretched to a strain of 15% and after cyclic stretched to 15% strain and released for 100 times.