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1 Phase Matching Angles in Biaxial Crys-
tals

Phase matching condition in biaxial crystals is governed by a pre-
cise relation1 involving the refractive index n as a function of the
frequency ω of the incident light and its value at 2ω, as well as
the angles of incidence of the incoming light:
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where k2
x = sinθ cosφ , k2

y = sinθ sinφ and k2
z = cosθ ; θ is the angle

between the wave normals and the z axis, φ is the angle from
the x axis in the xy plane; nx,ω , ny,ω , nz,ω and nx,2ω , ny,2ω , nz,2ω

are the three principal refractive indices of the fundamental and
the second harmonic waves, respectively; finally, nω and n2ω are
functions of ni,ω , ni,2ω , kx, ky and kz.

If the components of the refractive index are such to satisfy the
condition

n2ω = nω , (2)

Equation 1 can be resolved for a specific range of θ and φ angles
and the crystal is said to be of type I phase-matchable for the
Second Harmonic Generation of the frequency ω. The solutions of
Equation 1 are evaluated by fitting the first-principles computed
frequency dependent refractive index over the wavelength range
[0,4.56] µm. The numerical results are represented as curves in
a (θ ,φ) diagram, where θ and φ are the phase matching angles.
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2 Computational Approach
Density functional (perturbation) theory [DF(P)T] calculations
within the local-density approximation2 (LDA) and the indepen-
dent electron approximation, neglecting quasi-particle effects,
are performed using the ABINIT package3–6. To achieve high-
precision in the relaxed-ion nonlinear dielectric susceptibility, we
use a plane-wave cutoff of 800 eV and 5× 5× 5 k-point mesh.
Norm-conserving pseudopotentials, generated with the Troullier-
Martins scheme, are used for all atoms with the following va-
lence electron configuration: 2s1 (Li), 5s24d10 (Cd), 4s24p2 (Ge),
5s25p2 (Sn) and 3s23p4 (S). Unless specified, we use the exper-
imental7 atomic positions and crystal structures for all calcula-
tions of the Li2CdGeS4 (LCG) and Li2CdSnS4 (LCS) compounds,
respectively.

The second-order dielectric tensor di j is calculated by means
of the DFPT, evaluating the response of the system under elec-
tromagnetic perturbations8,9. In nonlinear optical materials, the
global response is described in terms of an average effective non-
linear coefficient, that is calculated averaging the response along
the crystal axes and exploiting the point group symmetries of the
system; for the present study, the point group of interest is mm2
and the de f f non linear coefficient is defined as
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The complex ε̃(ω) = εℜ(ω)+ iεℑ(ω) dielectric function is eval-
uated by means of the OPTIC utility included in the ABINIT pack-
age, using the ground state wavefunction and the wavefunction
derivatives with respect to their wavevector. The phase match-
ing condition is expressed in terms of the diagonal components
of the refractive index tensor. The ii diagonal component of the
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Fig. 1 Calculated electronic bandgap as a function of the SAMD for
each of the structures in the LCG- and LCS-path. The linear trends
justify the use of a constant scissor operator along each path to
calculate the properties of the hypothetical systems.

cartesian refractive index n(ω) tensor is calculated from ε̃(ω) as

nii =

√√√√ εℜ,ii +
√

ε2
ℜ,ii + ε2

ℑ,ii

2
. (4)

The refractive index and its related properties are very sensitive
of the bandgap width at the Fermi level, and qualitative errors are
introduced if the bandgap is not properly reproduced. To avoid
such artifacts, the scissor operator10 has been used to shift up-
wards the conduction band to match the calculated gap with the
experimental value. The experimental band gaps have been de-
termined by diffuse-reflectance spectroscopy technique and have
been found to be 3.15 and 3.26 eV for LCG and LCS, respec-
tively7. Calculations on both Li2CdGeS4 and Li2CdSnS4 com-
pounds have been based on use of the LDA energy functional that
is known to underestimate the band gaps. We find a band gap
of 2.54 and 2.39 eV for LCG and LCS, respectively; since these
values are lower than the experimental ones, the corresponding
valence bands have been shifted up by +0.61 and +0.33 eV, re-
spectively, by applying the scissor operator, in order to match the
experimental values. LCS is found to be a direct band gap insula-
tor, while LCG has an indirect band gap, consistent with previous
calculations reported in literature11. The calculated nonlinear re-
sponse is found to be de f f = 7.03 and de f f = 7.66 pm/V for LCG
and LCS, respectively, without the use of the scissor operator; the
scissor-corrected values are de f f = 5.33 and de f f = 6.49 pm/V for
LCG and LCS, respectively, corresponding to a relative SHG inten-
sity LCG/LCS=0.7, in agreement with the reported data12.

Along the LCG- and LCS-path, the electronic bandgap at the
Fermi level increases linearly with the SAMD (Figure 1); such
trend suggests that if it were possible to experimentally mea-
sure the bandgap of each hypothetical structure along the path,
we would observe bandgap values that are shifted by a constant
amount with respect to the corresponding calculated values. For
this reason, we choose a constant value for the scissor operator to
calculate the properties of the hypothetical systems, correspond-
ing to +0.61 and +0.33 eV for the LCG-path and LCS-path, re-
spectively, that coincide with the values used for the LCG and LCS
structures.

Fig. 2 Lower limit λmin of the incident wavelengths that satisfy the
phasematchability condition as a function of (a) structural distortions, (b)
bandgap and (d) covalency of the M–S bond. (c) Covalency of the M-S
bond as a function of the structural SAMD.

3 λmin Threshold Dependence on Electro-
Structural Features

All the structures of both adiabatic paths satisfy the phase-
matchability condition for particular values of the λ incident
wavelength above a certain thresold λmin. We observe that, at
fixed distortion, by changing the M atom it is possible to shift the
λmin value [Figure 2(a)]; moreover, λmin has a dependence of the
bandgap value that is peculiar of the stoichiometry and does not
provide sufficient information on how it is related to the onset
of the phasematchability [Figure 2(b)]. To understand the mi-
croscopic origin of the onset of the phase matching condition, we
need to investigate how the electronic features determine the λmin

value. The M atom has the effect to determine the charge distri-
bution along the M–S bond, fixing the CM,S bond covalency at a
specific value; on the other hand, CM,S is also determined by the
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magnitude of the structural distortions [Figure 2(c)]. The SHG
response and the minimum wavelength λmin at which the phase
matching condition is realized are dictated by the energy level
occupancy at the Fermi level edge; for this reason, the CM,S bond
covalency determines the λmin value at which the phase match-
ing condition is satisfied [Figure 2(d)]. In both adiabatic paths,
we observe that the minimum λmin is realized for the lowest M–S
bond covalency value, and λmin globally increases with increasing
CM,S.
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