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General Information

1H NMR and 13C NMR spectra were recorded on a MERCURY-VX300 spectrometer with 

CDCl3, CD3OD or CD2Cl2 as the solvent, and tetramethylsilane as an internal reference. EI-

MS were measured on ZAB 3F-HF Mass spectrometer. Elemental analyses of the carbon, 

hydrogen, and nitrogen content were carried out on a Vario EL-III microanalyzer. UV−Vis 

absorption spectra were recorded on a Shimadzu UV-2500 recording spectrophotometer. 

Photoluminescence (PL) spectra were recorded on a Hitachi F-4600 fluorescence 

spectrophotometer. Thermogravimetric analysis (TGA) was undertaken with a NETZSCH 

STA 449C instrument. The thermal decomposition temperature of the samples were 

determined by measuring their weight loss under a nitrogen atmosphere at a heating rate of 10 
oC min-1 from room temperature to 800 oC. Differential scanning calorimetry (DSC) 

measurements were performed on NETZSCH DSC 200 PC unit under a heating rate of 10 oC 

min-1 from -60 to 350 oC, and their glass transition temperature (Tg) were determined from the 

second heating scan. Cyclic voltammetric studies of the compounds in reduction processes 

were carried out in nitrogen-purged dimethyl formamide (DMF) and acetonitrile solution at 

room temperature with a CHI voltammetric analyzer. The Bu4NPF6 (0.1 M) was employed as 

the supporting electrolyte, and ferrocenium-ferrocene (Fc/Fc+) was served as the internal 

standard. The conventional three-electrode configuration consists of a platinum working 

electrode, a platinum wire counter electrode, and a silver/silver chloride (Ag/Ag+) reference 

electrode. The LUMO energy levels (eV) of these compounds were calculated according to 

the formula: - [4.8 eV + (Eonset, reversible – E1/2(Fc/Fc+))]. The PL lifetimes was measured by a 

single photon counting spectrometer from Edinburgh Instruments (FLS920) with a 

Picosecond Pulsed UV-LASTER (LASTER377) as the excitation source.

Device Fabrication and Performance Measurement

The patterned ITO coated glasses were undergone ultrasonic cleaning consecutively in 

acetone and ethanol. After UV-ozone treatment, a 30 nm-thick PEDOT:PSS (CLEVIOS P VP 

Al 4083) used as a hole-injecting layer was spin-coated on the ITO substrate and then dried in 

the glove-box at 120 oC for 10 min. The emissive layer (EML) was spin-coated on the top of 

the PEDOT: PSS layer from chlorobenzene solution. The thickness of the EML was about 80 

nm. And then electron transporting layer was spin-coated atop the EML. Finally, a composite 

cathode composed of Ba (20 nm) and Al (200 nm) was evaporated through a shadow mask. 
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The current density–voltage–luminance characteristics were measured combining a Keithley 

2400 source measurement unit and Spectroscan spectrometer PR735. The external quantum 

efficiency was calculated by assuming a Lambertian emission profile.

Materials Preparation

All reagents commercially available were used as received unless otherwise indicated. 

Solvents were purified according to standard procedures. The starting material of 2,3,5-

tribromopyridine,[1] 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine, 3-(3- 

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine, 4-(3-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)phenyl)pyridine,[2] and 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzene[3] were synthesized according to the literature procedures. The pyridine-based 

precursor of 3,3'-(5'-(3-(pyridin-3-yl)phenyl)-[1,1':3',1''-terphenyl]-3,3''-diyl)dipyridine 

(TmPyPB) were commercially available.

Synthesis of 1,4-bis(3,5-dibromopyridin-2-yl)benzene (1) : A mixture of 2,3,5-

tribromopyridine (2.04 g, 6.45 mmol), 1,4-bis(4, 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzene (851 mg, 2.57 mmol), Pd(OAc)2 (132 mg), PPh3 (312 mg) and potassium 

carbonate (1.78 g) in 40 ml degassed acetonitrile and 20 ml methanol was stirred at 50 oC for 

24 h under an argon atmosphere. After cooling to room temperature, the precipitate was 

filtered and washed with distilled water, methanol and dichloromethane successively. The 

remaining solid was dried in vacuum to yield a light yellow powder (0.85 g, yield: 62%). 1H 

NMR (300 MHz, CDCl3) δ [ppm]: 8.70 (s, 2H), 8.18 (s, 2H), 7.78 (s, 4H); MS (EI): m/z 547.8 

[M+]. Anal. calcd for C16H8Br4N2 (%): C 35.08, H 1.47, N 5.11; found: C 34.82, H 1.54, N 

5.03.

Synthesis of Tm2PyDPB: To a mixture of Compound 1 (655 mg, 1.19 mmol), 2-(3-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine (2.3 g, 8.2 mmol), potassium carbonate 

(2 g) and Pd(PPh3)4 (50 mg) was added 70 ml of degassed dioxane. The suspension was 

stirred at 100 oC for 2~3 d. After cooling to room temperature, the mixture was poured into 

water and then extracted with dichloromethane (50 ml × 3). The combined organic phase was 

washed with brine and water, and then dried over anhydrous Na2SO4. After the solvent had 

been removed under reduced pressure, the residue was purified by column chromatography on 
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silica gel using dichloromethane/methanol 40:1 (v/v) as the eluent to give a white solid (865 

mg, yield: 86%). 1H NMR (300 MHz, CDCl3) δ [ppm]: 9.02 (s, 2H), 8.73 (d, J = 4.2 Hz, 2H), 

8.67 (d, J = 3.9 Hz, 2H), 8.31 (s, 2H), 8.09 (s, 2H), 8.05 (d, J = 7.5 Hz, 2H), 7.98 (s, 2H), 7.89 

(d, J = 7.8 Hz, 2H), 7.71-7.81(m, 8H), 7.62 (t, J = 7.8 Hz, 4H), 7.42 (s, 4H), 7.15-7.29 (m, 

8H); 13C NMR (75 MHz, CDCl3) δ [ppm]: 157.03, 155.74, 149.97, 147.13, 140.52, 140.04, 

139.56, 138.04, 137.34, 137.11, 136.18, 135.20, 130.67, 130.08, 129.83, 129.01, 127.91, 

126.98, 126.28, 125.97, 122.71, 120.96; MS (EI): m/z 844.7 [M+]. Anal. calcd for C60H40N6  
(%): C 85.28, H 4.77, N 9.95; found: C 85.27, H 4.88, N 10.05.

Synthesis of Tm3PyDPB : Following the same procedure of Tm2PyDPB, using 3-(3-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine as the precursor to give the 

target compound of Tm3PyDPB as a white sold (yield 63%). 1H NMR (300 MHz, CDCl3) δ 

[ppm]: 9.01 (s, 2H), 8.91 (s, 2H), 8.72 (s, 2H), 8.64 (d, J = 3.3 Hz, 2H), 8.57 (d, J = 3.9 Hz, 

2H), 8.01 (s, 2H), 7.97 (d, J = 5.4 Hz, 2H), 7.93 (s, 2H), 7.63-7.72 (m, 8H), 7.49 (s, 4H), 7.37-

7.42 (m, 8H), 7.31-7.35 (m, 4H); 13C NMR (75 MHz, CDCl3) δ [ppm]: 155.75, 148.92, 

148.72, 148.44, 148.24, 147.06, 140.50, 139.41, 138.98, 138.25, 137.04, 136.26, 136.14, 

135.75, 134.93, 134.92, 130.01, 129.87, 129.34, 128.38, 127.17, 126.94, 126.32, 126.04, 

123.68; MS (EI): m/z 844.1 [M+]. Anal. calcd for C60H40N6  (%): C 85.28, H 4.77, N 9.95; 

found: C 85.64, H 4.61, N 9.75.

Synthesis of Tm4PyDPB : Following the same procedure of Tm2PyDPB, using 4-(3-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine as the precursor to give the 

target compound of Tm4PyDPB as a white sold (yield 62%). 1H NMR (300 MHz, CDCl3) δ 

[ppm]: 9.01 (s, 2H), 8.71 (d, J = 3.3 Hz, 4H), 8.62 (d, J = 3.9 Hz, 4H), 8.00 (s, 2H), 7.90 (s, 

2H), 7.68-7.77 (m, 14H), 7.43 (s, 4H), 7.33-7.38 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 

[ppm]: 155.81, 150.35, 147.85, 147.71, 147.09, 140.34, 139.44, 139.27, 138.45, 138.20, 

136.90, 135.55, 134.91, 130.15, 130.03, 129.90, 129.36, 128.32, 127.84, 127.00, 126.21, 

125.82, 121.77, 121.65; MS (EI): m/z 843.5 [M+]. Anal. calcd for C60H40N6 (%): C 85.28, H 

4.77, N 9.95; found: C 85.34, H 4.82, N 9.94.

General Procedure for Hydrochloric Acid-treatment Reaction : To a 50 ml round-bottom 

flask was added concentrated hydrochloric acid (20 ~ 30 ml) and the pyridine-containing 

precursors (TmPyPB, Tm2PyDPB, Tm3PyDPB or Tm4PyDPB, 1 mmol). The mixture was 

allowed to stir at room temperature for about 6~8 h. The light yellow liquid was then heated 

to about 80 oC and distilled under reduced pressure to remove the residual hydrochloric acid. 
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The residue was dissolved in ethanol, then precipitated by n-hexane to give the pyridine 

hydrochlorides with almost quantitative conversion.

PH-1 : 1H NMR (300 MHz, CD3OD) δ [ppm]: 9.35 (s, 3H), 9.07 (d, J = 8.7 Hz, 3H), 8.87 (d, 

J = 8.7 Hz, 3H), 8.30 (s, 3H), 8.21-8.16 (m, 6H), 8.08 (d, J = 6.6 Hz, 3H), 7.90 (d, J = 7.2 Hz, 

3H), 7.77 (t, J = 7.2 Hz, 3H), 4.91 (s, 3H); Anal. Calcd for C39H27N3·3HCl (%): Cl 16.44; 

found 16.23.

PH-2: 1H NMR (300 MHz, CD3OD) δ [ppm]: 9.32 (s, 2H), 9.08 (s, 2H), 8.93 (br, 4H), 8.73-

8.64 (m, 8H), 8.46-8.40 (m, 4H), 8.33 (d, J = 7.5 Hz, 2H), 8.17-8.07 (m, 8H), 7.93 (t, J = 7.5 

Hz, 2H), 7.61 (br, 6H), 7.45 (d, J = 3.3 Hz, 2H), 4.91 (m, 6H) Anal. Calcd for C60H40N6·6HCl 

(%): Cl 20.00; found 20.12.

PH-3: 1H NMR (300 MHz, CD3OD) δ [ppm]: 9.44 (s, 2H), 9.33 (br, 2H), 9.26 (br, 2H), 9.17 

(br, 2H), 8.98-8.89 (m, 8H), 8.51 (br, 2H), 8.24-8.12 (m, 8H), 8.05 (d, J = 7.2 Hz, 2H), 7.92-

7.83 (m, 4H), 7.64 (br, 4H), 7.54 (t, J = 5.7 Hz, 2H), 7.43 (t, J = 4.5 Hz, 2H), 4.92 (m, 6H); 

Anal. Calcd for C60H40N6·6HCl (%): Cl 20.00; found 19.68.

PH-4: 1H NMR (300 MHz, CD3OD) δ [ppm]: 9.37 (s, 2H), 9.02 (s, 2H), 8.95-8.93 (m, 8H), 

8.66 (d, J = 3.9 Hz, 6H), 8.46 (br, 4H), 8.28-8.19 (m, 6H), 8.07 (br, 2H), 7.93-7.89 (m, 2H), 

7.67-7.52 (m, 8H), 4.88 (m, 6H); Anal. Calcd for C60H40N6·6HCl (%): Cl 20.00; found 20.21.
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General procedure for precipitation titration method

The chlorinity of the pyridine hydrochlorides were quantified by precipitation titration method. 

Firstly, 10~20 mg pyridine hydrochlorides (PH-1, PH-2, PH-3 or PH-4) was dissolved in 10 

ml deionized water, then excessive amounts of AgNO3 standard solution (0.06434 mol/L, 

calibrated by NaCl standard solution) was added to insure the chloridion could be precipitated 

completely. After stirred at room temperature for 30 min, the suspension was concentrated to 

about 5 ml via evaporation. The excess AgNO3 was back-titrated by NH4SCN standard 

solution (0.02995 mol/L, calibrated by AgNO3 standard solution), and the indicator was 
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Fe(NO3)3 solution. According to the following formula, the content of Cl and the unknown x 

can be accurately calculated. 

Where x is the numbers of HCl in PHs:

Herein TmPyPB·xHCl representative PH-1, and the calculated x is 3;

Tm2PyDPB·xHCl representative PH-2, and the calculated x is 6;

Tm3PyDPB·xHCl representative PH-3, and the calculated x is 6;

Tm4PyDPB·xHCl representative PH-4, and the calculated x is 6.

Thermodynamic Property

The good thermal stabilities of the pyridine-based precursors were revealed by their high 

decomposition temperatures (Tds) in the thermogravimetric analysis (Figure S1) and high 

glass transition temperatures (Tgs) from differential scanning calorimetry (Figure S2), and the 

detailed data were presented at Table S1. The thermodynamic properties of these PHs are 

displayed in Figure S3.
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Table S1. Comparison of the excition lifetimes of the films.

sample τ1 (f1) [ns] τ2 (f2) [ns] χ² τavt [ns]

quartz/PEDOT:PSS/SY 1.24 (0.45) 2.60 (0.55) 1.12 1.99

quartz/PEDOT:PSS/SY/PH-1 1.55 (0.50) 2.83 (0.50) 1.29 2.19

quartz/PEDOT:PSS/SY/PH-2 1.44 (0.48) 2.70 (0.52) 1.15 2.10

quartz/PEDOT:PSS/SY/PH-3 1.35 (0.42) 2.58 (0.58) 1.15 2.06

quartz/PEDOT:PSS/SY/PH-4 1.37 (0.39) 2.62 (0.61) 1.16 2.13
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H-NMR spectra of the pyridine-containing precursors and their corresponding Pyridine 
Hydrochlorides.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

1.
1

1.
1

1.
0

1.
1

2.
1

1.
0

1.
0

1.
1

1.
0

3.
31

4.
87

4.
91

7.
747.
77

7.
79

7.
88

7.
90

8.
05

8.
088.
16

8.
218.
30

8.
85

8.
87

9.
04

9.
079.
35

6.87.27.68.08.48.89.29.6

1.
1

1.
0

1.
1

2.
1

1.
0

1.
0

1.
1

1.
0

7.
74

7.
77

7.
79

7.
88

7.
90

8.
05

8.
08

8.
16

8.
21

8.
30

8.
85

8.
87

9.
04

9.
07

9.
35

Figure S6 1H-NMR of PH-1 in CD3OD.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

5.
03

1.
98

2.
19

2.
24

2.
07

0.
95

3.
29

1.
04

1.
05

1.
10

1.
00

6.46.87.27.68.08.48.89.29.6

5.
03

1.
98

2.
19

2.
24

2.
07

0.
95

3.
29

1.
04

1.
05

1.
10

1.
00

7.
15

7.
17

7.
20

7.
23

7.
24

7.
26

7.
29

7.
41

7.
59

7.
61

7.
64

7.
71

7.
73

7.
76

7.
80

7.
86

7.
89

7.
98

8.
02

8.
04

8.
09

8.
31

8.
66

8.
67

8.
72

8.
73

9.
01

Figure S7 1H-NMR of Tm2PyDPB in CDCl3.

N

N

NH

H

H

Cl

Cl

Cl

PH-1

N

N

N

N

N

N



12

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

3.
54

0.
89

3.
03

0.
99

4.
09

1.
04

1.
97

4.
12

2.
08

0.
93

1.
00

3.
31

4.
88

4.
91

4.
92

7.
457.

61
7.

938.
07

8.
10

8.
14

8.
17

8.
30

8.
33

8.
40

8.
44

8.
46

8.
64

8.
678.
708.
73

8.
93

9.
08

9.
32

7.57.77.98.18.38.58.78.99.19.3

0.
9

3.
0

1.
0

4.
1

1.
0

2.
0

4.
1

2.
1

0.
9

1.
0

7.
44

7.
45

7.
56

7.
61

7.
90

7.
93

7.
95

8.
07

8.
10

8.
14

8.
17

8.
30

8.
33

8.
40

8.
44

8.
64

8.
67

8.
70

8.
73

8.
93

9.
089.
32

Figure S8 1H-NMR of PH-2 in CD3OD.
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Figure S10 1H-NMR of PH-3 in CD3OD.
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Figure S11 1H-NMR of Tm4PyDPB in CDCl3.
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Figure S12 1H-NMR of PH-4 in CD3OD.

Electroluminescent properties.
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Figure S13. Current density (a) and luminance (b) versus voltage curves of Device A1~A5.
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Figure S14. Current density (a) and luminance (b) versus voltage curves of Device B1~B6.
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Figure S15. Normalized electroluminescence spectra of Device A1~A5 at 2 mA cm-2
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Figure S16. Normalized electroluminescent spectra of Device B1~B6 at 2 mA cm-2
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