Supplementary Information section

Nanoparticles of Cu₂ZnSnS₄ as Performance Enhancing Additives for Organic Field-Effect Transistors

Punarja Kevin,^a Mohammad Azad Malik,^b Paul O'Brien,^{ab} Joseph Cameron,^c Rupert G. D. Taylor,^c Neil J. Findlay,^c Anto R. Inigo^c and Peter J. Skabara*^c

^aSchool of Chemistry, The University of Manchester, M13 9PL, UK

^bSchool of Materials, The University of Manchester, M13 9PL, UK

eWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, UK

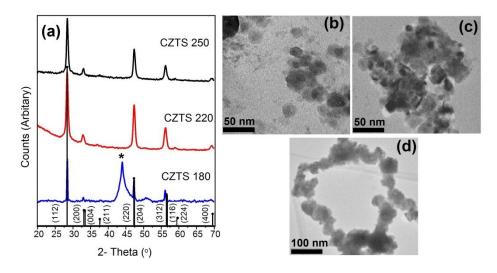
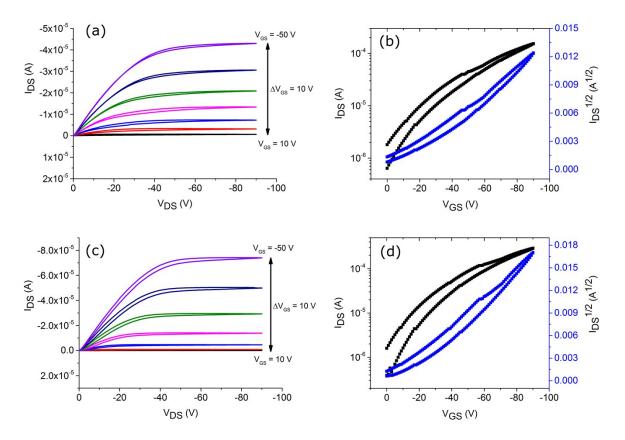
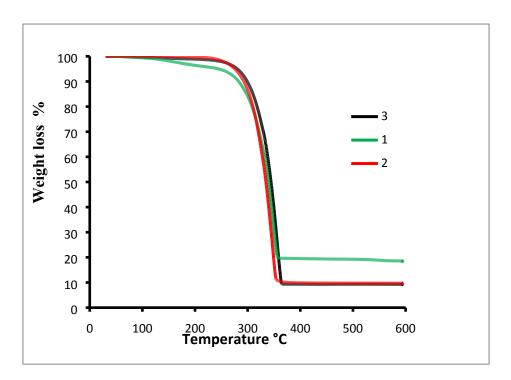




Figure S1: (a) are the p-XRD patterns of the CZTS nanoparticles synthesised at 180, 220 and 250°C. Peaks are indexed according to the Kesterite structure (ICDD: 04-015-0223) of CZTS (stick patterns). The * mark shows unknown peaks. (b)-(d) are the TEM images of CZTS nanoparticles synthesised at 180, 220 and 250°C respectively.

Figure S2: Output and transfer characteristics (left and right columns, respectively) for OFETs fabricated using P3HT + 5% oleylamine [(a) and (b)] and P3HT + 10% oleylamine [(c) and (d)]

Figure S3: TGA analysis of the samples $[Cu(S_2CNEt_2)_2]$ (1), $[Zn(S_2CNEt_2)_2]$ (2) and $[^nBu_2Sn(S_2CNEt_2)_2]$ (3). Analyses of the samples were carried out by a Seiko SSC/S200 model from 10 to 600°C with a heating rate of 10°C min⁻¹ under nitrogen.