Supporting information for:

# Pyrazolium Based Electrolyte for Solid-State Dye-Sensitized Solar

# Cells with High Fill Factor and Open-Circuit Voltage

Tong He<sup>c</sup>, Ye Feng Wang<sup>\*a,b</sup>, Jing Hui Zeng<sup>\*a,c</sup>

<sup>a</sup>Shaanxi Provincial Key Laboratory of Macromolecular Science and <sup>b</sup>School of Chemistry & Chemical Engineering, <sup>c</sup>School of Material Science and Engineering, Shaanxi Normal University, Xi'an, China, 710062.

<sup>\*</sup> To whom all corresponding should be addressed. Email: wangyefeng@snnu.edu.cn, nanosci@snnu.edu.cn

#### Part 1 <sup>1</sup>H NMR, <sup>13</sup>C NMR and ESI - MS of $Py_nC_6$ (n = 2, 1; anion = Br) (Fig. S1 – S2).

**Fig. S1** Py<sub>2</sub>C<sub>6</sub> (anion = Br) <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  8.15 (dd, *J* = 8.4, 2.8 Hz, 2H), 6.72 (t, *J* = 2.9 Hz, 1H), 4.40 (dd, *J* = 13.8, 6.7 Hz, 4H), 1.88 (s, 2H), 1.50 (t, *J* = 7.3 Hz, 3H), 1.36 (s, 2H). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O)  $\delta$  136.80, 136.08, 107.51, 49.74, 45.38, 28.04, 24.95, 13.36. MS Calculated for C<sub>16</sub>H<sub>28</sub>BrN<sub>4</sub> (m/z): 355.1493, Found: 355.1492.



| Display Report                                                     |                                             |                                                                |          |                                                              |                                                    |                |              |  |  |
|--------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------------------------------------|----------------|--------------|--|--|
| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment | D:\Data\FAN\dat<br>pos_low-201511<br>hetong | a\2015\1228\ht1.d<br>16.m                                      |          | Acquisition Date<br>Operator<br>Instrument                   | 12/28/2015 10:31:40 AM<br>Fan<br>maXis 10103       |                |              |  |  |
| Acquisition Par<br>Source Type<br>Focus<br>Scan Begin<br>Scan End  | ESI<br>Not active<br>100 m/z<br>1000 m/z    | Positive<br>4500 V<br>ate Offset -500 V<br>n Cell RF 200.0 Vpp |          | Set Nebulize<br>Set Dry Heat<br>Set Dry Gas<br>Set Divert Va | r 0.4 Bar<br>ter 180 °C<br>4.0 l/min<br>alve Waste |                |              |  |  |
| Intens.<br>x10 <sup>5</sup><br>3-                                  | 355                                         | .1 <sup>493</sup> 357.                                         | 1474     |                                                              |                                                    | +MS, 0.0-0.    | 1 min #(2-4) |  |  |
| 2-                                                                 |                                             |                                                                |          |                                                              |                                                    |                |              |  |  |
| 1-                                                                 |                                             | 356.1523                                                       | 358.1    | 503                                                          |                                                    |                |              |  |  |
| x10 <sup>5</sup>                                                   | 355                                         |                                                                | 1472     |                                                              |                                                    | C 16 H 28 Br N | 4 ,355.15    |  |  |
| 3-                                                                 |                                             |                                                                |          |                                                              |                                                    |                |              |  |  |
| 2-                                                                 |                                             |                                                                |          |                                                              |                                                    |                |              |  |  |
| 1-                                                                 |                                             | 356.1525                                                       | 358.1    | 359 1538                                                     |                                                    |                |              |  |  |
| 0                                                                  | 354                                         | 356                                                            | 358      |                                                              | 360 362                                            | 364            | m/z          |  |  |
| Bruker Compass                                                     | DataAnalysis 4.0                            |                                                                | printed: | 12/28/2015                                                   | 10:39:37 AM                                        | Page 1 c       | of 1         |  |  |

**Fig. S2** PyC<sub>6</sub>·(anion = Br) <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.61 (d, J = 2.2 Hz, 2H), 6.94 (s, 1H), 4.50 (q, J = 8.0 Hz, 4H), 1.82 (s, 2H), 1.47 (t, J = 7.1 Hz, 3H), 1.29 (s, 6H), 0.88 (d, J = 6.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  137.15, 136.49, 107.34, 49.32, 44.88, 30.50, 28.27, 25.12, 21.86, 14.06, 13.79. MS Calculated for C<sub>11</sub>H<sub>21</sub>N<sub>2</sub> (m/z): 181.1698, Found: 181.1699.





### Part 2 <sup>1</sup>H NMR of $Py_nC_6$ (*n* = 2, 1) (Fig. S3 – S4).

**Fig. S3** Py<sub>2</sub>C<sub>6</sub> <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ 8.14 (dd, *J* = 8.2, 2.7 Hz, 2H), 6.71 (t, *J* = 3.0 Hz, 1H), 4.39 (dd, *J* = 13.8, 6.6 Hz, 4H), 1.87 (s, 2H), 1.49 (t, *J* = 7.3 Hz, 3H), 1.35 (t, *J* = 7.4 Hz, 2H).



**Fig. S4** PyC<sub>6</sub> <sup>1</sup>H NMR (400 MHz, DMSO) δ 8.60 (d, *J* = 2.5 Hz, 2H), 6.94 (t, *J* = 2.6 Hz, 1H), 4.53 – 4.45 (m, 4H), 1.82 (s, 2H), 1.47 (t, *J* = 7.2 Hz, 3H), 1.29 (s, 6H), 0.88 (d, *J* = 6.3 Hz, 3H).



Part3 IR spectra for  $Py_nC_6$  (n = 2, 1; anion = Br) and  $Py_nC_6$  (n = 2, 1) (Fig. S5).



**Fig. S5** IR spectra for (a)  $Py_2C_6$  (anion = Br) and  $Py_2C_6$ , (b)  $PyC_6$  (anion = Br) and  $PyC_6$ , In the IR spectra, 2070cm<sup>-1</sup> is the characteristics absorption peak of the stretching vibration for SCN<sup>-1</sup>This suggests the success of the anion exchange.



Part 4 XRD patterns for  $Py_nC_6$  (n = 2, 1; anion = Br) and  $Py_nC_6$  (n = 2, 1) (Fig. S6).

**Fig. S6** XRD patterns for (a)  $Py_2C_6$  (anion = Br), (b)  $Py_2C_6$ , (c)  $PyC_6$  (anion = Br) and (d)  $PyC_6$ .

Part 5 The thermal gravimetric analysis (TGA, 5% weight loss) and differential scanning calorimeter (DSC) for  $Py_nC_6$  (n = 2, 1; anion = Br) and  $Py_nC_6$  (n = 2, 1) (Fig. S7 – S8).



Fig. S7 (a) DSC curves and (b) TGA curves of a series of  $Py_nC_6$  (n = 2, 1; anion = Br).



Fig. S8 (a) DSC curves and (b) TGA curves of a series of  $Py_nC_6$  (n = 2, 1).

Part 5 Cyclic voltammetry (CV) for  $Py_2C_6$ ,  $PyC_6$  and PMII electrolytes using symmetrical Pt electrode.



Fig. S9 Cyclic voltammetry (CV) using symmetrical Pt electrode sandwiched with  $Py_2C_6$ ,  $PyC_6$  and PMII electrolytes at a scan rate of 100mV/s.

Part 6 DSSC devices of equivalent circuit models



Fig. S10 DSSC devices were conducted by the equivalent circuit models, and a p-n junction solar cell can be simulated with an ideal diode, series resistance  $R_s$ , and shunt resistance  $R_{sh}$ .

Part 7 Long-term Stability of DSSC (Fig. S11), equivalent circuit (Fig. S12) (Table S1)



Fig. S11 *J*-V curves of part time based on (a)  $Py_2C_6$ , (b)  $PyC_6$  and (c) PMII electrolytes.



Fig. S12 Equivalent circuit deduced from EIS curves.

| Table S1 Stability of DSSC | based on (a) Pv₂C₄ (b | ) PvC <sub>4</sub> and (c) PMII electrolytes |
|----------------------------|-----------------------|----------------------------------------------|
| Table ST Studinty of DSSC  | $y_2 c_6, (0)$        | y = y = 0 and (c) I will electrolytes.       |

|                                | Time<br>(h)                    | 0     | 100   | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000  |
|--------------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Py <sub>2</sub> C <sub>6</sub> | $J_{sc}$ (mA/cm <sup>2</sup> ) | 11.78 | 11.76 | 11.64 | 11.63 | 11.60 | 11.61 | 11.61 | 11.44 | 11.43 | 11.36 | 11.24 |
|                                | V <sub>oc</sub><br>(V)         | 0.779 | 0.779 | 0.778 | 0.778 | 0.776 | 0.776 | 0.775 | 0.775 | 0.773 | 0.772 | 0.771 |
|                                | FF<br>(%)                      | 79.55 | 79.36 | 79.40 | 79.35 | 79.21 | 78.70 | 78.58 | 78.28 | 78.21 | 78.22 | 77.20 |
|                                | РСЕ<br>(%)                     | 7.30  | 7.27  | 7.19  | 7.18  | 7.13  | 7.09  | 7.07  | 6.94  | 6.91  | 6.86  | 6.69  |
| PyC <sub>6</sub>               | $J_{sc}$ (mA/cm <sup>2</sup> ) | 8.99  | 8.89  | 8.74  | 8.54  | 8.32  | 8.26  | 7.98  | 7.47  | 7.36  | 7.08  | 6.52  |
|                                | <i>V<sub>oc</sub></i><br>(V)   | 0.766 | 0.762 | 0.755 | 0.751 | 0.751 | 0.747 | 0.741 | 0.728 | 0.721 | 0.713 | 0.696 |
|                                | FF<br>(%)                      | 79.43 | 80.16 | 79.86 | 79.36 | 79.22 | 79.09 | 79.15 | 79.07 | 78.58 | 77.46 | 77.35 |
|                                | РСЕ<br>(%)                     | 5.47  | 5.43  | 5.27  | 5.09  | 4.95  | 4.88  | 4.68  | 4.30  | 4.17  | 3.91  | 3.51  |
| PMII                           | $J_{sc}$ (mA/cm <sup>2</sup> ) | 7.97  | 7.97  | 7.89  | 7.82  | 7.80  | 7.75  | 7.72  | 7.66  | 7.57  | 7.49  | 7.38  |
|                                | <i>V<sub>oc</sub></i><br>(V)   | 0.754 | 0.752 | 0.749 | 0.743 | 0.739 | 0.732 | 0.727 | 0.720 | 0.720 | 0.719 | 0.717 |
|                                | FF<br>(%)                      | 81.71 | 81.59 | 81.39 | 80.89 | 80.67 | 80.56 | 80.36 | 79.78 | 80.54 | 79.85 | 79.75 |
|                                | РСЕ<br>(%)                     | 4.91  | 4.89  | 4.81  | 4.70  | 4.65  | 4.57  | 4.51  | 4.40  | 4.39  | 4.30  | 4.22  |

# Reference

<sup>1</sup> Ganesan, K.; Ratke, L. Facile Preparation of Monolithic κ-Carrageenan Aerogels. *Soft Matter* **2014**, *10*, 3218-3224.