Support Information

Proposed electron transmission mechanism between Fe³⁺/Co²⁺ and

Fe³⁺/Fe³⁺ in spinel structure and its practical evidence on quaternary

 $Fe_{0.5}Ni_{0.5}Co_2S_4$

Hualiang Lv,^a Haiqian Zhang,^a Baoshan Zhang,^b Guangbin Ji,^{a,*} Yun He,^c Qing Lin^c

^aCollege of Material Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing 210016, P. R. China

^bSchool of Electronic Science and Engineering, Nanjing University, Nanjing 210093,

P. R. China

^cCollege of Physics and Technology, Guangxi Normal University, Guilin 541004,

China

*Corresponding Author:

Prof. Dr. Guangbin Ji.

Tel: +86-25-52112902; Fax: +86-25-52112626

E-mail: gbji@nuaa.edu.cn

Sampla	Etching	Sourco	Total	Numbor	Enory stop	Etching
Sample	Licining	Source	Total	INUITIDEI	Enegy step	Etening
	element	Gun	acquistit	of	Size	Time
		Tyoe	ion time	Energy		
				steps		
Fe _{0.5} Ni _{0.5} Co ₂	Ar ion	Al Ka	1 min	1361	1.00 eV	~3000 s
O_4			8.0 secs			
Fe _{0.5} Ni _{0.5} Co ₂	Ar iron	Al Ka	1 min	1361	1.000 eV	~3000 s
S_4			8.0 secs			

 Table S1. The etching parameters of the two samples.

Figure S1. XPS data of $Fe_{0.5}Ni_{0.5}Co_2O_4$ and $Fe_{0.5}Ni_{0.5}Co_2S_4$ treated by Ar-cluster etching technique: (a, c, e): Co 3/2p, Ni 3/2p, Fe 3/2p of $Fe_{0.5}Ni_{0.5}Co_2O_4$; (b, d, f) Co3/2p, Ni 3/2p, Fe 3/2p of $Fe_{0.5}Ni_{0.5}Co_2S_4$.

Figure S2. The Mössbauer of $Fe_{0.5}Ni_{0.5}Co_2O_4$ and $Fe_{0.5}Ni_{0.5}CoS_4$.

According to the Isomer shift value, we can get information that the Fe ions in both two samples presented tervalence. Besides, Fe³⁺ only can be found at B sites.¹⁻²

[1] S.J. Kim, C.S.Kim; Journal of the Korean Physical Society, 2014, 64, 852-856.

[2] D. Polikarpov, V. Cherepanov, M. Chuev, R. Gabbasov, I. Mischenko, M. Nikitin, Y. Vereshagin, A. Yurenia, V. Panchenko. *Hyperfine Interace*, 2014, 226, 421–430.