Supporting Information

Unified Film Patterning and Annealing of an Organic Semiconductor with Micro-Grooved Wet Stamps

Kyunghun Kim^{1,‡}, Mi Jang^{2,‡}, Minjung Lee², Tae Kyu An³, John E. Anthony⁴, Se Hyun Kim^{5,*}, Hoichang Yang^{2,*}, and Chan Eon Park^{1,*}

¹Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

²Department of Applied Organic Materials Engineering, Inha University, Incheon 402-751, Korea

³Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Korea

⁴Department of Chemistry, University of Kentucky, Kentucky 40506, USA

⁵Division of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea

KEYWORDS: direct solvent annealing; triethylsilylethynyl-anthradithiophene (TES-ADT); soft patterning; uniformity; organic field-effect transistor

[‡]K.K. and M.J. contributed equally to this work.

*Corresponding authors: hcyang@inha.ac.kr; cep@postech.ac.kr; shkim97@yu.ac.kr

Figure S1. (a) Degree of weight increase and (b) OM images of the 50 μ m-patterned PDMS stamp over time during immersion in the DCE reservoir. Note that in (b), the black scale bars indicate 50 μ m. As the immersion time increased, particularly after 10 min, the line width of the PDMS stamp increase, indicating swelling in the PDMS.

Figure S2. Photographs of the μ -PDMS stamps before and after the TES-ADT patterning process.

Figure S3. Polarized OM images of the unpatterned TES-ADT films after applying the solvent annealing process. (a) The radial growth of TES-ADT crystals from the nucleation site, and (b) the impingement among crystallites grown from different nucleation sites.

Figure S4. Polarized OM images of square-patterned TES-ADT films prepared using (a) 100, (b) 50, (c) 10, (d) 2.5 μm line patterned PDMS stamps.

Figure S5. AFM topography (top) and cross-section profile (bottom) of the 100-µm patterned TES-ADT film.

Figure S6. 2 $\mu m \times 2 \ \mu m$ AFM topography image of the as-spun TES-ADT film.

Figure S7. 2D GIXD patterns of the as-spun TES-ADT film.

Figure S8. 1D X-ray reflections extracted at $q_{\{01\}}$, $q_{\{10\}}$, and $q_{\{-11\}}$ from the 2D GIXD patterns of (a) 100, (b) 50, (c) 10, (d) 2.5 µm TES-ADT samples (Figure 5).

Figure S9. 2D GIXD patterns obtained from a normal DSA-treated TES-ADT film along the footprint of the incident beam with a width × height of $300 \times 50 \ \mu\text{m}^2$. The patterns corresponding to each footprint are indicated in the upward-polarized OM images.

Figure S10. Output characteristics of OFETs prepared with 100 or 2.5 µm-patterned TES-ADT film.