Electronic Supplementary Information (ESI)

Controllable synthesis of elliptical $Fe_3O_4@C$ and $Fe_3O_4/Fe@C$ nanorings for plasmon resonance-enhanced microwave absorption

Yun Liu, ^{ab} Yana Li, ^a Kedan Jiang, ^a Guoxiu Tong, ^{*a} Tianxi Lv, ^a Wenhua Wu^a

^a College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China ^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China

*Corresponding author. *E-mail address:* tonggx@zjnu.cn (G.X. Tong).

Fig. S1 Thermogravimetric (TG) curves of the sample obtained at 600 °C.

The carbon content of the sample obtained at 600 °C was quantitatively determined by thermogravimetric (TG) analysis (Fig. S1). Heating the materials from room temperature to 700 °C in air produces only Fe_2O_3 . From the TG curve, it can be observed that there is a small weight loss below 150 °C due to the remove of adsorbed water and gaseous contents.¹ And two weight increase regions from 150°C to 300°C and 350°C to 400°C are caused by the oxidation of Fe_3O_4 and Fe to Fe_2O_3 when heated in air.² The combustion of carbon causes the main weight loss, which begins around 300 °C and completes at about 650°C.^{3,4} Based on the analysis above and Fig. S1, the

carbon content of the core-shell sample can be estimated as ~14.06%.

Fig. S2 3D plots of reflection loss for wax composites containing 50 w% NRs formed at 600 °C.

Fig. S3 (a) SEM image and (b) XRD pattern of the sample obtained by sintering the nanosheet precursors at 600 °C for 2 h under N₂ without the present of acetone. (c) Reflection loss curves for wax composites containing 60 wt.% Fe_3O_4 NRs formed at 600 °C.

Fig. S4 Frequency dependence of the real (ε') and imaginary (ε'') parts of the relative complex permittivity, the dielectric loss (tan $\delta_{\rm E}$), the real (μ') and imaginary (μ'') parts of the relative complex permeability, and the magnetic loss (tan $\delta_{\rm M}$) of NRs formed at various $t_{\rm s}$. (a) 300 °C, (b) 400 °C, (c) 500 °C, and (d) 600 °C.

Fig. S5 (a) Cole-Cole semicircles (ε' versus ε''), (b) $\mu''(\mu')^{-2}f^{-1}$ (representing eddy current loss) versus frequency and (c) Matching constant ($K = |\tan \delta_E / \tan \delta_M|$) versus frequency of NRs formed at various *t*.

Reference

1 T. Zhu, J. S. Chen, X. W. Lou, J. Phys. Chem. C, 2011, 115, 9814.

2 B. Zhang, Y. C. Du, P. Zhang, H. T. Zhao, L. L. Kang, X. J. Han, P. Xu, J. Appl. Polym. SCI., 2013, 130, 1909.

3 F. Wu, R. Huang, D. B. Mu, B. R. Wu, S. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 19254.

4 Y.R. Wang, L. Zhang , X.H. Gao , L.Y. Mao, Y. Hu, X. W. Lou, Small, 2014, 10, 2815.