Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

High-Performance Non-volatile Transistor Memories Using Amorphous Oxide Semiconductor and Ferroelectric Polymer

Yu Wang,^a Takio Kizu,^b Lei Song,^a Yujia Zhang,^a Sai Jiang,^a Jun Qian,^a Qijing Wang,^a Yi Shi,^{*a} Youdou Zheng,^a Toshihide Nabatame,^c Kazuhito Tsukagoshi^{*b}, and Yun Li^{*a}

^aNational Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China, *E-mail: yli@nju.edu.cn and yshi@nju.edu.cn ^bInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, *E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp

^cMANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

Figure S1. Capacitance versus bias voltage curve of an Au/P(VDF-TrFE)/Au sample. Inset shows the cross-sectional device structure. The capacitance was measured by applying a sweeping voltage (from -30 V to 30 V and then backward) at a low frequency of 200 Hz, exhibiting a typical butterfly shape. The capacitance represented the irreversible ferroelectric polarization, in which dipole switching occurs at the biased voltages of approximately 10 and -10 V.

Figure S2. Programming cycle endurance obtained as the ratio of the on and off currents measured at the drain voltage of 1 V as a function of the number of programming cycles. The gate voltages for the write, read, and erase processes are set as 20 V, 0 V, and -20 V, respectively, as depicted in the inset.

Figure S3. (a) Typical transfer and (b) output curves of bottom-gate device using SiO₂ as the dielectric and InSiO (In₂O₃:SiO₂ = 90:10 wt.%) as the semiconductor. Inset shows the device structure. A carrier mobility of 9.1 cm² V⁻¹ s⁻¹ was extracted.

Figure S4. Schematic of the interfacial interaction between P(VDF-TrFE) and InSiO. The existence of interfacial charge transfer from the P(VDF-TrFE) layer to the semiconducting channel leads to the increase of charge carrier density, and then improves the carrier mobility. ^[1,2]

Figure S5. We fabricated the top-gate devices using poly(methyl methacrylate) (PMMA) as the top-gate dielectric and InSiO ($In_2O_3:SiO_2 = 90:10 \text{ wt.}\%$) as the semiconductor (inset). (a) A typical transfer exhibited the carrier mobility of 10.1 cm² V⁻¹ s⁻¹. This value is similar with that of the FETs using SiO₂ as the bottom-gate dielectric, and both are significantly lower than that of devices using annealed P(VDF-TrFE). (b) Output curves of top-gate device using PMMA as dielectric.

Annealing Temperature [°C]	$\mu_{\text{FET}}[a]$ [cm ² V ⁻¹ s ⁻¹]	$\mu_{\text{FET}}[b]$ [cm ² V ⁻¹ s ⁻¹]	Memory Window [V]	On/Off Ratio (V _G =0V)
Un-Annealing	0.02±0.01	0.79±0.59	6±1	$3.2 \pm 2.6 \times 10^2$
120	0.35±0.34	23.83±3.31	11±4	$2.1 \pm 1.5 \times 10^4$
125	17.12±7.38	47.87±8.34	14±2	3.2±1.5×10 ⁵
130	28.99±4.45	75.40±9.54	21±6	$0.9{\pm}0.3{\times}10^{6}$
140	0.44±0.49	27.90±5.42	4±2	$2.6 \pm 0.9 \times 10^3$

Table S1. Carrier mobility, memory window and on/off ratio of the devices under different annealing condition of P(VDF-TrFE) film.

[a] The carrier mobility under quasi-static-frequency of 0.1 Hz for the capacitance measurements. [b] The carrier mobility under low-frequency of 200 Hz for the capacitance measurements.

References:

[1] M.-F. Lin, X. Gao, N. Mitoma, T. Kizu, W. Ou-Yang, S. Aikawa, T. Nabatame and K. Tsukagoshi, *AIP Adv.*, 2015, **5**, 017116.

[2] N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M. F. Lin, A. Fujiwara, T. Nabatame and K. Tsukagoshi, *Appl. Phys. Lett.*, 2015, **106**, 042106.