Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

Nanofibers generated from nonclassical organogelators based on difluoroboron β-diketonate complexes to detect aliphatic primary amine vapors

Lu Zhai, Mingyang Liu, Pengchong Xue, Jingbo Sun, Peng Gong, Zhenqi Zhang, Jiabao Sun and Ran ${\rm Lu}^*$

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin

University, Changchun 130012, P. R. China

E-mail: luran@mail.jlu.edu.cn

Contents:

1. Photophysical data of ABA , ABVA and AVBVA .	S 2
2. Cyclic voltammetry curves of ABA, ABVA and AVBVA.	S 3
3. Pictures of the gels.	S 3
4. XRD pattern of xerogel ABVA.	S4
5. UV-vis absorption spectra of ABVA in xerogel-based films upon exposed <i>n</i> -propylamine.	l to S4
6. ¹ H NMR spectral changes of ABVA in CDCl ₃ upon adding <i>n</i> -propylamine.	S5
7. Fluorescence emission spectra of the xerogel-based films of ABVA upon exporto organic amines.	osed S6
8. ¹ H NMR, ¹³ C NMR and MS spectra.	S 7

			,		
Complex	Solvent	λ _{abs} (nm)	λ _{em} (nm)	Stokes shift (cm ⁻¹)	$\Phi_{F}^{\ a}$
ABA	Cyclohexane	488	518	1186	-
	Toluene	500	552	1884	0.97
	THF	501	585	2866	0.21
	Acetone	502	612	3580	-
	DMSO	516	614	3093	-
ABVA	Cyclohexane	501, 527	553	892	-
	Toluene	541	590	1535	0.70
	THF	539	632	2729	0.15
	Acetone	542	655	3183	-
	DMSO	560	678	3108	-
AVBVA	Cyclohexane	525, 558	582	739	-
	Toluene	574	621	1319	0.82
	THF	573	655	2185	0.13
	Acetone	578	699	2995	-
	DMSO	600	711	2003	-

Table S1. Photophysical data of ABA, ABVA and AVBVA.

^a Fluoresce in 1M NaOH ($\Phi_F = 0.95$) was used as the standard in measuring Φ_F for **ABA** and **ABVA**, and cresyl violet in methanol ($\Phi_F = 0.53$) was used as the standard in measuring Φ_F for **AVBVA**.

Figure S1. Cyclic voltammetry diagrams of complexes ABA, ABVA and AVBVA in anhydrous CH_2Cl_2 with 0.1 M Bu₄NBF₄ as electrolyte at a scan rate of 50 mV/s.

Figure S2. Pictures of the gels of ABVA (left) and AVBVA (right) obtained from 1,4-dioxane/cyclohexane (v/v = 1/4).

Figure S3. XRD pattern of xerogel ABVA.

Figure S4. UV-vis absorption spectra of the xerogel-based films of **ABVA** upon exposure to *n*-propylamine in different concentrations for 30 s.

Figure S5. ¹H NMR (400 MHz) spectra of **ABVA** in CDCl₃ (3.2×10^{-3} M) before (a) and after (b) adding 2.0×10^{3} equiv. of *n*-propylamine as well as (c) further adding a drop of D₂O.

Figure S6. UV-vis absorption (a) and fluorescence emission (b, $\lambda_{ex} = 400$ nm) spectra of the xerogel-based film of **AVBVA** upon exposure to *n*-propylamine in different concentrations for 30 s. Insets: the fluorescence enhanced of the xerogel films after being added into a cell filled with the vapors of *n*-propylamine.

Figure S7. Fluorescence emission spectra of the xerogel film based on **ABVA** upon exposure to saturated vapors of *n*-butylamine (a), pyridine (b), cyclohexylaminein (c), aniline (d), tributylamine (e) and triethylamine (f) for 30 s. The excitation wavelength is 360 nm.

Figure S9. ¹³C NMR (100 MHz) spectrum of ABA in CDCl₃.

Reflectron Mode

Figure S11. ¹H NMR (400 MHz) spectrum of compound 3 in CDCl₃.

Figure S15. ¹³C NMR (100 MHz) spectrum of ABVA in CDCl₃.

Figure S16. MALDI/TOF MS spectrum of ABVA.

Figure S17. ¹H NMR (400 MHz) spectrum of AVBVA in CDCl₃.

Figure S19. MALDI/TOF MS spectrum of AVBVA.