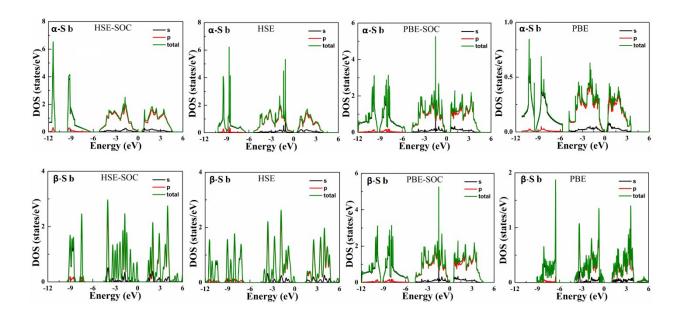
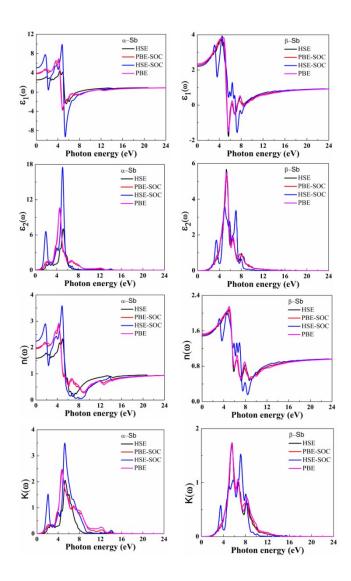
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

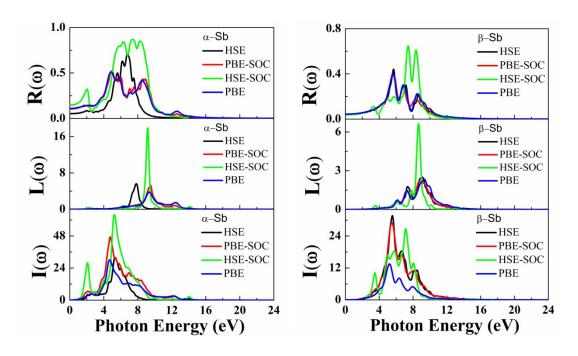
## **Electronic Supplementary Information (ESI)**


Antimonene: a monolayer material for ultraviolet optic nanodevices

D. Singh, a S. K. Guptab, Y. Sonvane a and I. Lukačević c


<sup>&</sup>lt;sup>a</sup> Department of Applied Physics, S. V. National Institute of Technology, Surat, 395007, India.

b. Department of Physics and Electronics, St. Xavier's College, Ahmedabad, 380009, India.


<sup>&</sup>lt;sup>c.</sup> Department of Physics, University J. J. Strossmayer, 31000 Osijek, Croatia.



**Fig. S1** Comparison of the electronic densities of states (DOS) of two antimonene allotropes  $\alpha$ -Sb (up) and  $\beta$ -Sb (down) obtained using PBE and HSE06 functionals with and without the spin-orbit coupling.



**Fig. S2** The real and imaginary parts of complex dielectric function along with the refractive index  $n(\omega)$  and extinction coefficient  $K(\omega)$  of  $\alpha$ -Sb (left) and  $\beta$ -Sb (right) monolayers obtained using PBE and HSE06 functionals with and without the spin-orbit coupling.



**Fig. S3** The absorption coefficient  $I(\omega)$ , energy loss spectrum  $L(\omega)$  and reflectivity  $R(\omega)$  of  $\alpha$ -Sb (left) and  $\beta$ -Sb (right) monolayers obtained using PBE and HSE06 functionals with and without the spin-orbit coupling. The unit of absorption coefficient is  $10^5$ /cm.