Aromatic π - π Driven Supergelation, Aggregation Induced Emission and Columnar Self-assembly of Star-shaped 1,2,4-Oxadiazole Derivatives

Suraj Kumar Pathak^a, Balaram Pradhan^a, Ravindra Kumar Gupta^a, Monika Gupta^b, Santanu Kumar Pal^b and Ammathnadu S. Achalkumar^a*

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.^b Indian Institute of Science Education and Research Mohali,Sector-81, Knowledge City, Manauli 140306, Punjab, India.

Supporting information

Table of Contents

Serial Number	Contents	Page numbers
1	Materials and methods	S2-S3
2	Experimental Section	S4-S14
3	NMR Spectra	S15-S33
4	Polarized Optical Microscopy	S34
5	Thermogravimetric Analysis	S35
6	Differential Scanning Calorimetry	S35
7	X-ray diffraction studies	S36-S37
8	Photophysical properties	S38-S39
9	Cyclic Voltammetry	S40
10	Gelation studies	S41
11	Single Crystal XRD studies	S42-S46
12	References	S47

Materials and methods

All commercially obtained chemicals were used as received. As required the solvents were dried as per the standard protocols. Silica gel or neutral alumina used as stationery phase for column chromatography. Alluminium sheets coated with silica gel were used for thin layer chromatography (TLC) to monitor the reactions and column purifications. Infrared spectra were measured on a Perkin Elmer IR spectrometer at room temperature by preparing the KBr pellet. ¹H and ¹³C NMR spectra were recorded using Varian Mercury 400 MHz (at 298K) or Bruker 600 MHz NMR spectrometer. Mass spectrometry was carried out using MALDI-TOF mass spectrometer or High Resolution Mass Spectrometer. Polarizing optical microscope (POM) (Nikon Eclipse LV100POL) in conjunction with a controllable hot stage (Mettler Toledo FP90) was used for the charactreization of mesogens. The phase transitions, associated enthalpy changes were obtained by differential scanning calorimeter (DSC) (Mettler Toledo DSC1). X-ray diffraction (XRD) studies were carried out using image plate and a detector. This setup had Cu K α (λ =0. 15418 nm) radiation from a source (GeniX3D, Xenocs) operating at 50 kV and 0.6 mA in conjunction with a multilayer mirror was used to irradiate the sample. Glass capillaries containing the sample were used for the measurements. Thermogravimetric analysis (TGA) was accomplished with a thermogravimetric analyzer (Mettler Toledo, model TG/SDTA 851 e). Perkin-Elmer Lambda 750, UV/VIS/NIR spectrometer was used to obtain UV-Vis spectra, while Fluoromax-4 fluorescence spectrophotometer and Perkin Elmer LS 50B spectrometer were used to obtain emission spectra in solution state and solid thin film state respectively. Steady State anisotropy experiment was performed on Horiba Scientific Fluoromax spectrofluorometer 4. Time resolved lifetime measurements were done on time correlated single photon counter from Horiba Jobin Yvon (excitation by 440 nm laser diode). Cyclic Voltammetry (CV) studies were carried out using a Versa Stat 3 (Princeton Applied Research) instrument. The X-ray diffraction data were collected at 296 K with Mo K_a radiation ($\lambda = 0.71073$ Å) using a Bruker Nonius SMART APEX II CCD diffractometer equipped with a graphite monochromator. Smart software was used for data collection and also for indexing the reflections and determining the unit cell parameters; the collected data were integrated using SAINT software. The structures were solved by direct methods and refined by full-matrix least-squares calculations using SHELXTL software. All the non-H atoms were refined in the anisotropic approximation.

Atomic Force microscopy (AFM) images were obtained for the drop-casted films using Agilent 5500-STM instrument. TEM images were obtained on a JEM-2100 Transmission Electron Microscope operating at an accelerating voltage of 200 kV. SEM images were obtained on a JEOL 7600F FESEM instrument. Rheological data is obtained using Rheometer MCR-302 Anton Paar.

Experimental Section

Compounds 6c-d, 5c-d, 4b-d were prepared as per the reported procedures.¹ Synthesis of compounds 3a-d, 2a-d and 1a-d are reported as below.

Procedure for the synthesis of ethyl 3,4,5-tris(decyloxy) benzoate $(6c)^{1}$

A mixture of ethyl gallate (25.23 mmol, 1equiv.), anhyd K_2CO_3 (166.52 mmol, 6.6 equiv.), *n*-bromodecane (80.74 mmol, 3.2 equiv.) were taken in dry DMF (20 ml) and heated at 80 °C for 17 h under nitrogen atmosphere. Then the reaction mixture was poured into ice-water and extracted with CH_2Cl_2 . The combined extract was washed with water and brine. Dried over anhyd. Na₂SO₄ and concentrated. The crude product was purified by column chromatography on neutral alumina. Elution with hexanes followed by 5-10% ethylacetate-hexanes yielded the desired product.

 $R_f = 0.58$ (10% EtOAc-hexanes); Low melting colorless solid; yield: 70%; IR (KBr pellet): v_{max} in cm⁻¹2920, 2850, 1710, 1597, 1516, 1466, 1424, 1347, 1213, 1103, 760, 613; ¹H NMR (CDCl₃, 400 MHz): δ 7.26 (s, 2H, Ar), 4.35-4.36 (m, 2H, COOCH₂), 4.01 (s, 6H, 3 × OCH₂), 1.27-1.81 (m, 48H, 24 × CH₂), 0.89 (bs, 12H, 4 × CH₃); ¹³C NMR (CDCl₃, 100 MHz): 166.67, 152.99, 145.31, 125.24, 108.19, 73.68, 69.37, 61.14, 32.12, 30.53, 29.93, 29.84, 29.79, 29.60, 29.56, 26.29, 22.89, 14.30; HRMS (ESI+) exact mass calculated for C₃₉H₇₁O₅ (M+1): 619.5296, Found: 619.5218

Procedure for the synthesis of ethyl 3,4,5-tris(dodecyloxy) benzoate $(6d)^{1}$

A mixture of ethyl gallate (25.23 mmol, 1equiv.), anhyd K_2CO_3 (166.52 mmol, 6.6 equiv.), *n*-bromododecane (83.26 mmol, 3.3 equiv.) were taken in dry DMF (20 ml) and heated at 80 °C for 17 h under nitrogen atmosphere. Then the reaction mixture was poured into ice-water and extracted with CH₂Cl₂. The combined extract was washed with water and brine. Dried over anhyd Na₂SO₄ and concentrated. The crude product was purified by column chromatography on neutral alumina. Elution with hexanes followed by 5-10% ethylacetate-hexanes yielded the desired product.

 $R_f = 0.61(10\% \text{ EtOAc-hexanes})$; Low melting colorless solid; yield: 90%; IR (KBr pellet): v_{max} in cm⁻¹ 2924, 2853, 1716, 1590, 1504, 1465, 1432, 1333, 1222, 1119; ¹H NMR (CDCl₃, 600 MHz): δ 7.25 (s, 2H, Ar), 4.33 – 4.37 (m, 2H, COOCH₂), 4.01 (m, 6H, 3 × OCH₂), 1.23-1.83 (m, 60H, 30 × CH₂), 0.87-0.89 (m, 12H, 4 × CH₃); ¹³C NMR (CDCl₃, 150 MHz): 166.66, 153.01, 142.57, 125.26, 108.24, 73.68, 69.40, 61.14, 32.14, 30.54, 29.95, 29.92, 29.85, 29.79, 29.61, 29.54, 26.30, 22.90, 14.30; HRMS (ESI+) exact mass calculated for $C_{45}H_{83}O_5$ (M+1): 703.6235, Found: 703.6199.

Procedure for the synthesis of (3,4,5-tris(decyloxy)phenyl)methanol(5c):²

To a stirred suspension of lithium aluminium hydride (LAH) (18.2 mmol, 1.5 equiv.) in dry THF (20 ml) under nitrogen atmosphere, added the solution of ethyl 3,4,5-tris(decyloxy) benzoate (12.13 mmol, 1 equiv.) drop wise at 0 °C. Then the reaction mixture was allowed to reach room temperature and stirred for 2 h. Excess LAH present was quenched by the addition of moist sodium sulphate. Reaction mixture was extracted with EtOAc (5×50 ml). The combined extracts were washed with water, dried over anhyd Na₂SO₄ and concentrated *in vaccuo*. Purification was done by column chromatography over silica gel (60-120) with 10% EtOAchexanes as eluent.

 $R_f = 0.12$ (10% EtOAc-hexanes), white solid, m.p: 44 – 46°C; yield: 75%; IR (KBr pellet): v_{max} in cm⁻¹ 3412.64, 2922.60, 2852.97, 1592.66, 1466.88, 1440.35, 1335.89, 1233.54, 1121.80, 811.98, 723.09 and 455.56; ¹H NMR (CDCl₃, 400 MHz): δ 6.55 (s, 2H, Ar), 4.58 (s, 2H, ArCH₂), 3.91- 3.98 (m, 6H, 3 × OCH₂), 1.27-1.82 (m, 48H, 24 × CH₂), 0.86 – 0.89 (m, 9H, 3 × CH₃); ¹³C NMR (CDCl₃, 100 MHz): 153.46, 137.75, 136.27, 105.52, 73.65, 69.30, 65.84, 63.30, 33.01, 32.15, 32.12, 30.53, 29.95, 29.89, 29.86, 29.83, 29.80, 29.76, 29.63, 29.57, 26.34, 26.31, 25.94, 22.89, 14.31; HRMS (ESI+) exact mass calculated for C₃₇H₆₉O₄(M+1): 577.5190, Found: 577.5185.

Procedure for the synthesis of (3,4,5-tris(dodecyloxy)phenyl) methanol (5d):²

To a stirred suspension of lithium aluminium hydride (LAH) (21.33 mmol, 1.5 equiv.) in dry THF (20 ml) under nitrogen atmosphere, added the solution of ethyl 3,4,5-tris(dodecyloxy) benzoate (14.22 mmol, 1 equiv.) drop wise at 0 °C. Then the reaction mixture was allowed to reach room temperature and stirred for 2 h. Excess LAH present was quenched by the addition of moist sodium sulphate. Reaction mixture was extracted with EtOAc (6×30 ml). The combined extracts were washed with water, dried over anhyd Na₂SO₄and concentrated *in vaccuo*. Purification was done by column chromatography over silica gel (60-120) with 10% EtOAchexanes as eluent. R_{f} = 0.15 (10% EtOAc-hexanes), white solid, m.p: 52 – 54°C; yield: 80%; IR (KBr pellet): v_{max} in cm⁻¹ 3417.27, 2922.36, 2852.51, 1590.29, 1467.09, 1438.45, 1334.39, 1231.90, 1124.64, 806.80, 722.27, and 466.28; ¹H NMR (CDCl₃, 400 MHz): δ 6.55 (s, 2H, Ar), 4.59 (s, 2H, ArCH₂), 3.91-3.98 (m, 6H, 3 × OCH₂), 1.26-1.81 (m, 60H, 30 × CH₂), 0.86 – 0.89 (m, 9H, 3 × CH₃); ¹³C NMR (CDCl₃, 100 MHz): 153.46, 137.75, 136.27, 105.52, 73.65, 69.29, 65.86, 32.16, 32.14, 30.53, 29.97, 29.95, 29.92, 29.87, 29.84, 29.63, 29.58, 26.35, 26.32, 22.91, 14.33; HRMS (ESI+) exact mass calculated for C₄₃H₈₁O₄(M+1): 661.6129, Found: 661.6128.

Procedure for the synthesis of 3,4- bis(decyloxy)benzaldehyde (4b):

A mixture of 3,4-dihydroxybenzaldehyde (14.48 mmol, 1equiv.), anhyd K_2CO_3 (60.82 mmol, 4.2 equiv.), *n*-bromodecane (31.86 mmol, 2.2 equiv.) were taken in dry DMF (20 ml) and heated at 80 °C for 17 h under nitrogen atmosphere. Then the reaction mixture was poured into ice-water and extracted with CH₂Cl₂. The combined extract was washed with water and brine. Dried over anhyd Na₂SO₄ and concentrated. The crude product was recrystallised with ethanol to get the pure product.

 $R_f = 0.5$ (10% EtOAc-hexanes); white solid, m.p: 62 – 64°C; yield: 80%; IR (KBr pellet): v_{max} in cm⁻¹ 3341.99, 3086.82, 2953.59, 2921.42, 2850.54, 2754.45, 1687.44, 1591.37, 1438.55, 1394.40, 1345.49, 1235.46, 1132.99, 723.43, 657.51, and 586.51; ¹H NMR (CDCl₃, 400 MHz): δ 9.83(s, 1H, CHO), 7.41 (d, 1H, J = 8 Hz Ar), 7.39(s,1H, Ar), 4.03-4.09 (m, 4H, 2× OCH₂), 1.32-1.87 (m, 32H, 16 × CH₂), 0.86 - 0.89 (m, 6H, 2 × CH₃); ¹³C NMR (CDCl₃, 100 MHz): 191.24, 154.89, 149.64, 130.07, 126.82, 111.95, 111.15, 69.33, 32.12, 29.83, 29.80, 29.78, 29.76, 29.59, 29.56, 29.28, 29.18, 26.19, 26.16, 22.89, 14.32; HRMS (ESI+) exact mass calculated for C₂₇H₄₇O₃(M+1): 419.3520, Found: 419.3517.

Procedure for the synthesis of 3,4,5-tris(decyloxy)benzaldehyde (4c):²

An appropriate (3,4,5-tris(decyloxy) phenyl)methanol (8.7 mmol,1 equiv.) was taken in CH₂Cl₂ (10 vol.). To this pyridinium chlorochromate (8.7 mmol, 1 equiv.) adsorbed over equal amount of silica gel is added and stirred at room temperature for 1h.The reaction mixture was filtered over celite bed and concentrated to get the crude product, which was further purified by column chromatography on silica gel (60-120) with 10% EtOAc-hexanes as eluent.

 $R_f = 0.51(10\%$ EtOAc-hexanes), low melting white solid, yield: 70%; IR (KBr pellet): v_{max} in cm⁻¹ 3369.16, 2950.81, 2923.70, 2852.91, 2728.30, 1742.75, 1695.63, 1585.77, 1439.72, 1382.43, 1332.61, 1228.57, 1117.47, 720.99, 645.56 and 580.35 ; ¹H NMR (CDCl₃, 400 MHz): δ 9.82 (s, 1H, CHO), 7.08 (s, 2H, Ar), 4.01 - 4.07(m, 6H, $3 \times \text{OCH}_2$), 1.27 -1.84 (m, 48H, 24 × CH₂), 0.86 – 0.89 (m, 9H, $3 \times \text{CH}_3$); ¹³C NMR (CDCl₃, 100 MHz): 191.55, 153.72, 144.00, 131.63, 108.01, 73.84, 69.41, 32.15, 32.12, 30.54, 29.93, 29.88, 29.84, 29.79, 29.76, 29.59, 29.56, 29.45, 26.28, 26.23, 22.90, 14.33; HRMS (ESI+) exact mass calculated for C₃₇H₆₇O₄(M+1): 575.5034, Found: 575.5033.

Procedure for the synthesis of 3,4,5-tris(dodecyloxy)benzaldehyde (4d):²

An appropriate (3,4,5-tris(dodecyloxy) phenyl)methanol (11.3 mmol,1 equiv.) was taken in CH₂Cl₂ (10 vol.). To this pyridinium chlorochromate (11.3 mmol, 1 equiv.) adsorbed over equal amount of silica gel is added and stirred at room temperature for 1h.The reaction mixture was filtered over celite bed and concentrated to get the crude product, which was further purified by column chromatography on silica gel (60-120) with 10% EtOAc-hexanes as eluent.

 $R_f = 0.53$ (10% EtOAc-hexanes), white solid, m.p: 49 – 51°C; yield: 81%; IR (KBr pellet): v_{max} in cm⁻¹ 3441.06, 2956.36, 2919.21, 2849.30, 2729.23, 1695.12, 1584.10, 1439.42, 1381.82, 1336.74, 1226.84, 1119.30,720.33, 645.33 and 579.48; ¹H NMR (CDCl₃, 400 MHz): δ 9.83(s, 1H, CHO), 7.08 (s, 2H, Ar), 4.01 - 4.07(m, 6H, 3 × OCH₂), 1.18-1.84 (m, 60H, 30 × CH₂), 0.86 – 0.89 (m, 9H, 3 × CH₃); ¹³C NMR (CDCl₃, 100 MHz): 191.52, 153.74, 144.08, 131.66, 108.07, 73.85, 69.45, 32.14, 30.56, 29.97, 29.94, 29.92, 29.88, 29.85, 29.76, 29.60, 29.47, 26.29, 26.25, 22.92, 14.33; HRMS (ESI+) exact mass calculated for C₃₇H₇₉O₄(M+1): 659.5973, Found:659.5975.

Procedure for the synthesis of 4-decyloxy benzonitrile (3a):

A mixture of 4-dihydroxybenzaldehyde (41.97 mmol, 1equiv.), anhyd K_2CO_3 (92.34 mmol, 2.2 equiv.), *n*-bromodecane (46.17 mmol, 1.1 equiv.) were taken in dry DMF (20 ml) and heated at 80 °C for 17 h under nitrogen atmosphere. Then the reaction mixture was poured into ice-water and extracted with CH₂Cl₂. The combined extract was washed with water and brine. Dried over anhyd Na₂SO₄ and concentrated. The crude product was recrystallised with ethanol to get the pure product.

 $R_f = 0.53$ (10% EtOAc-hexanes), low melting white solid, yield: 80%; IR (KBr pellet): v_{max} in cm⁻¹ 2920.38, 2851.64, 2556.48, 2218.96, 1606.75, 1573.82, 1508.08, 1470.06, 1396.50, 1258.77, 1118.93, 832.93, 808.98 and 715.49 ; ¹H NMR (CDCl₃, 600 MHz): δ 7.57 (d, 2H, J = 6 Hz, Ar), 6.93 (d, 2H, J = 6 Hz, Ar), 3.99 (t, 2H, J = 6 Hz, $1 \times \text{OCH}_2$), 1.24-1.81 (m, 16H, $8 \times \text{CH}_2$), 0.88 (t, 3H, J = 6 Hz, $1 \times \text{CH}_3$); ¹³C NMR (CDCl₃, 100 MHz): 162.67, 134.16, 119.55, 115.37, 103.82, 68.63, 32.08, 29.73, 29.51, 29.18, 26.13, 22.88, 14.31; HRMS (ESI+) exact mass calculated for C₁₇H₂₆NO(M+1): 260.2009, Found:260.1999.

Procedure for the synthesis of 3,4-bis(decyloxy) benzonitrile (3b):³

3,4-bis(decyloxy) benzaldehyde (9.55mmol, 1equiv.) was added to a solution of hydroxyl amine hydrochloride (17.68mmol, 1.85equiv.) in DMSO (19.1mL), and the resulting reaction solution was stirred and heated for 3hrs at 100° C. After cooling to room temperature, water was added to the reaction mixture , which was then extracted with Chloroform (5× 20mL). The combined chloroform layers were washed with water (4× 20mL) and dried with sodium sulfate. Removal of chloroform by rotatory evaporation and high vacuum yielded the desired product which was then recrystallised with ethanol to get the pure product.

 $R_f = 0.6$ (10% EtOAc-hexanes), white solid, m.p: 77 – 78°C; yield: 70%; IR (KBr pellet): v_{max} in cm⁻¹ 2920.20, 2850.27, 2220.44, 1597.05, 1518.72, 1467.71, 1422.67, 1278.38, 1242.48, 1138.03, 988.18, 808.27 and 722.14;¹H NMR (CDCl₃, 400 MHz): δ 7.23(dd, 1H, J = 1.2 Hz, J =8Hz, Ar), 7.06-7.07 (m, 1H, Ar), 6.86 (d, 1H, J = 8 Hz, Ar), 3.96-4.04(m, 4H, 2 × OCH₂), 1.27-1.85 (m, 32H, 16 × CH₂), 0.86-0.89(m, 6H, 2 × CH₃); ¹³C NMR (CDCl₃, 100MHz):153.30, 149.28, 126.52, 119.66, 116.27, 112.94, 103.71, 69.67, 69.33, 32.12, 29.80, 29.76, 29.55, 29.24, 29.16, 26.14, 22.89, 14.32; HRMS (ESI+) exact mass calculated for C₂₇H₄₆NO₂(M+1): 416.3523, Found:416.3419.

Procedure for the synthesis of 3,4,5-tris(decyloxy) benzonitrile (**3c**):³

3,4,5-tris(decyloxy) benzaldehyde (5.9mmol, 1equiv.) was added to a solution of hydroxyl amine hydrochloride (10.92mmol, 1.85equiv.) in DMSO(11.8mL), and the resulting reaction solution was stirred and heated for 3hrs at 100°C. After cooling to room temperature, water was added to the reaction mixture , which was then extracted with Chloroform (5× 20mL). The combined chloroform layers were washed with water (4× 20mL) and dried with sodium sulfate. Removal

of chloroform by rotatory evaporation and high vacuum yielded the desired product which was then recrystallised with ethanol to get the pure product.

 $R_f = 0.65$ (10% EtOAc-hexanes), white solid, m.p. 50 – 52°C; yield: 80%; IR (KBr pellet): v_{max} in cm⁻¹ 2922.87, 2852.85, 2225.51, 1580.96, 1500.88, 1465.41, 1431.78, 1239.49, 1121.99, 813.75 and 720.49; ¹H NMR (CDCl₃, 600 MHz): δ 6.81(s, 2H, Ar), 4.00(t, 2H, J = 6 Hz, 1 × OCH₂), 3.95 (t, 4H, J = 6 Hz, 2 × OCH₂),1.24-1.82 (m, 48H, 24 × CH₂), 0.88(t, 9H,J = 6 Hz, 3 × CH₃); ¹³C NMR (CDCl₃, 150MHz): 153.65, 142.71, 119.44, 110.69, 106.37, 73.90, 69.61, 32.12, 32.10, 30.48, 29.90, 29.85, 29.79, 29.76, 29.72, 29.57, 29.53, 29.37, 26.20, 22.88, 14.29; HRMS (ESI+) exact mass calculated for C₃₇H₆₆NO₃(M+1): 572.5025, Found:572.5037.

Procedure for the synthesis of 3,4,5-tris(dodecyloxy) benzonitrile (3d):³

3,4,5- tris(dodecyloxy)benzaldehyde (3.03mmol, 1equiv.) was added to a solution of hydroxyl amine hydrochloride (5.614mmol, 1.85equiv.) in DMSO(6mL), and the resulting reaction solution was stirred and heated for 3hrs at 100°C. After cooling to room temperature, water was added to the reaction mixture, which was then extracted with Chloroform (5×20 mL). The combined chloroform layers were washed with water (4×20 mL) and dried with sodium sulfate. Removal of chloroform by rotatory evaporation and high vacuum yielded the desired product which was then recrystallised with ethanol to get the pure product.

 $R_f = 0.67$ (10% EtOAc-hexanes), white solid, m.p: 62 – 63°C; yield: 78%; IR (KBr pellet): v_{max} in cm⁻¹ 2921.22, 2851.17, 2225.45, 1580.94, 1502.67, 1467.20, 1431.38, 1239.70, 1122.57, 832.19 and 720.40; ¹H NMR (CDCl₃, 600 MHz): δ 6.81(s, 2H, Ar), 4.00(t, 2H, J = 6 Hz, 1 × OCH₂), 3.94 – 3.97 (m, 4H, 2 × OCH₂), 1.23-1.82 (m, 60H, 30 × CH₂), 0.88 (t, 9H, J = 6 Hz, 3 × CH₃); ¹³C NMR (CDCl₃, 100MHz): 153.63, 142.62, 119.49, 110.61, 106.35, 73.91, 69.57, 32.14, 30.48, 29.95, 29.92, 29.89, 29.86, 29.82, 29.73, 29.60, 29.57, 29.55, 29.35, 26.21, 22.90, 14.32; HRMS (ESI+) exact mass calculated for C₄₃H₇₈NO₃(M+1): 656.5976, Found:656.5853.

Procedure for the synthesis of 4-bis(decyloxy)-N-hydroxybenzamidine(2a):⁴

To a stirred solution of 4 -decyloxy benzonitrile (30.84 mmol, 1equiv.) in ethanol (20ml) was added hydroxylamine hydrochloride (67.85 mmol, 2.2 equiv.) and then triethylamine (70.94 mmol, 2.3 equiv.) was added. The solution was stirred under reflux for 18h and then diluted with water. Ethanol was removed under reduced pressure and the aqueous layer extracted 2 times with

DCM. The combined organic phases were dried over Na₂SO₄, evaporated under reduced pressure as the residue purified by recrystallization (ethanol) to afford the title compound as a white solid.

 $R_f = 0.5$ (40% EtOAc-hexanes), white solid, m.p: 112 – 114°C, yield: 85%;IR (KBr pellet): v_{max} in cm⁻¹ 3448.41, 3350.58, 2921.52, 2852.69, 1652.88, 1610.28, 1519.12, 1390.54, 1251.93 and 826.64;¹H NMR (CDCl₃, 600 MHz): δ 7.55(d, 2H, J = 6 Hz, Ar), 6.90 (d, 2H, J = 12 Hz, Ar), 4.82 (s, 2H, NH₂), 3.97(t, 2H, J = 6 Hz, $1 \times \text{OCH}_2$), 1.25 -1.81 (m, 16H, $8 \times \text{CH}_2$), 0.88(t, 3H, J = 6 Hz, $1 \times \text{CH}_3$); ¹³C NMR (CDCl₃, 100MHz): 160.78, 152.80, 127.37, 124.82, 114.73, 68.32, 32.11, 29.79, 29.60, 29.54, 29.40, 26.23, 22.90, 14.34; HRMS (ESI+) exact mass calculated for C₁₇H₂₉N₂O₄(M+1): 293.2224, Found:293.2220.

Procedure for the synthesis of 3,4-bis(decyloxy)-N'-hydroxybenzamidine(2b):⁴

To a stirred solution of 3,4-bis(decyloxy) benzonitrile (6.01 mmol, 1equiv.) in ethanol (10ml) was added hydroxylamine hydrochloride (13.23 mmol, 2.2 equiv.) and then triethylamine (13.82 mmol, 2.3 equiv.) was added. The solution was stirred under reflux for 18h and then diluted with water. Ethanol was removed under reduced pressure and the aqueous layer extracted 2 times with DCM. The combined organic phases were dried over Na₂SO₄, evaporated under reduced pressure as the residue purified by recrystallization (ethanol) to afford the title compound as a white solid.

 $R_f = 0.58$ (40% EtOAc-hexanes), white solid, m.p: 77 – 78°C; yield: 82%; IR (KBr pellet): v_{max} in cm⁻¹ 3452.31, 2953.80, 2922.91, 2852.18, 1638.91, 1522.08, 1384.51, 1264.04 and 807.26;¹H NMR (CDCl₃, 400 MHz): δ 7.18(s, 1H, Ar), 7.12 (d,1H, *J* = 8 Hz, Ar), 6.86 (d,1H, *J* = 8.4 Hz, Ar) 4.85(s, 2H, NH₂), 3.99 -4.02 (m, 4H, 2 × OCH₂),1.26-1.81 (m, 32H, 16 × CH₂), 0.86 – 0.89 (m, 6H, 2× CH₃); ¹³C NMR (CDCl₃, 100MHz):153.05, 150.97, 149.33, 125.32, 118.67, 113.37, 111.63, 69.56, 69.44, 32.13, 29.85, 29.80, 29.63, 29.57, 29.47, 29.41, 26.25, 26.22, 22.90, 14.31; HRMS (ESI+) exact mass calculated for C₂₇H₄₉N₂O₃(M+1): 449.3738, Found:449.3661.

Procedure for the synthesis of 3,4,5-tris(decyloxy)–N'- hydroxybenzamidine (2c):⁴

To a stirred solution of 3,4,5–tris(decyloxy)benzonitrile (3.5 mmol, 1equiv.) in ethanol (5ml) was added hydroxylamine hydrochloride (7.69 mmol, 2.2 equiv.) and then triethylamine (8.05 mmol, 2.3 equiv.) was added. The solution was stirred under reflux for 18h and then diluted with water. Ethanol was removed under reduced pressure and the aqueous layer extracted 2 times with

DCM. The combined organic phases were dried over Na₂SO₄, evaporated under reduced pressure as the residue purified by recrystallization (ethanol) to afford the title compound as a white solid.

 $R_f = 0.6$ (40% EtOAc-hexanes), white solid, m.p. 66 - 68°C; yield: 72%; v_{max} in cm⁻¹ 3440.43, 2922.26, 2851.53, 1633.54, 1583.77, 1512.26, 1379.12, 1239.39 and 942.71;¹H NMR (CDCl₃, 400 MHz): δ 6.80 (s, 2H, Ar), 4.83 (s, 2H, NH₂), 3.94-3.99 (m, 6H, 3 × OCH₂), 1.27-1.81(m, 48H, 24 × CH₂), 0.86 – 0.89 (m, 9H, 3 × CH₃);¹³C NMR (CDCl₃, 100MHz):153.43, 153.28, 139.99, 127.69, 104.79, 73.69, 69.44, 32.15, 32.12, 30.52, 29.95, 29.89, 29.86, 29.81, 29.63, 29.57, 26.30, 22.90, 14.32; HRMS (ESI+) exact mass calculated for C₃₇H₆₉N₂O₄(M+1): 605.5252, Found:605.5289.

Procedure for the synthesis of 3,4,5-tris(dodecyloxy)-N'- hydroxybenzamidine (2d):⁴

To a stirred solution of 3,4,5-tris(dodecyloxy) benzonitrile (2.29 mmol, 1equiv.) in ethanol (5ml) was added hydroxylamine hydrochloride (5.04 mmol, 2.2 equiv.) and then triethylamine (5.27 mmol, 2.3 equiv.) was added. The solution was stirred under reflux for 18h and then diluted with water. Ethanol was removed under reduced pressure and the aqueous layer extracted 2 times with DCM. The combined organic phases were dried over Na₂SO₄, evaporated under reduced pressure as the residue purified by recrystallization (ethanol) to afford the title compound as a white solid.

 $R_f = 0.62(40\% \text{ EtOAc-hexanes})$, white solid, m.p: 74 – 75°C; yield: 70%; v_{max} in cm⁻¹3440.88, 3354.89, 2945.26, 2921.07, 2850.12, 1634.03, 1582.24, 1511.82, 1371.52, 1240.11, 941.74; 1H NMR (CDCl₃, 600 MHz): δ 6.81 (s, 2H, Ar), 4.81 (s, 2H, NH₂), 3.95-3.99 (m, 6H, 3 × OCH₂), 1.23 - 1.82 (m, 60H, 30 × CH₂), 0.88 (t, 9H, J = 6 Hz, 3 × CH₃); ¹³C NMR (CDCl₃, 100MHz): 153.44, 153.26, 139.98, 127.69, 104.78, 73.69, 69.44, 32.16, 32.14, 30.53, 29.97, 29.95, 29.92, 29.87, 29.82, 29.63, 29.61, 29.59, 26.32, 22.91, 14.34; HRMS (ESI+) exact mass calculated for C₄₃H₈₁N₂O₄(M+1): 689.6191, Found:689.6191.

Procedure for the synthesis of 5-(3,5-bis(3-(4-(decyloxy)phenyl)-1,2,4-oxadiazol-5-yl)phenyl)-3-(4-(decyloxy)phenyl)-1,2,4-oxadiazole (1a)⁵

A mixture of 4-(decyloxy)-N'-hydroxybenzamidine (1.11 mmol, 3.1 equiv.) and dry pyridine (8ml) was stirred under Ar atmosphere at 0 $^{\circ}$ C. To this, a solution of benzene-1,3,5-tricarboyl trichloride (0.36 mmol, 1 equiv.) in dry THF was added drop wise. The reaction mixture was

refluxed for 12 h and then poured into cold water. The whole mass (a mixture of solid and water) was extracted with Chloroform (2×100 ml). The combined extracts were washed with water, brine, dried over anhyd.Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on neutral alumina. Elution with 20% CH₂Cl₂ hexanes yielded the desired product. Recrystallization with ethylacetate gives the pure product.

 $R_f = 0.5$ (60%CH₂Cl₂-hexane), colorless crystals, m.p: 128 – 130°C; yield: 60%; v_{max} in cm⁻¹2922.62, 2851.59, 1609.91, 1543.21, 1471.52, 1355.16, 1252.64, 1171.24, 759.28;¹H NMR (CDCl₃, 400 MHz): δ 9.15 (s, 3H, Ar), 8.13 (d, 6H, J = 8.8 Hz, Ar), 7.01 (d, 6H, J = 8.8 Hz, Ar), 4.02(t, 6H, J = 6.4 Hz, 3 × OCH₂), 1.23-1.84(m, 48H, 24 × CH₂), 0.89(t, 9H, J = 6.4 Hz, 3 × CH₃);¹³C NMR (CDCl₃, 100MHz): 173.28, 169.31, 162.06, 130.71, 129.46, 126.85, 118.72, 115.05, 68.43, 32.12, 29.79, 29.63, 29.55, 29.41, 26.25, 22.91, 14.34; MALDI-TOF exact mass calculated for C₆₀H₈₁N₆O₆(M+3H): 981.6207, Found:981.6210.

Procedureforthesynthesisof $3-(3,4-bis(decyloxy)phenyl)-5-(3,5-bis(3-(3,4-bis(decyloxy)phenyl)-1,2,4-oxadiazol-5-yl)phenyl)-1,2,4-oxadiazolebis(decyloxy)phenyl)-1,2,4-oxadiazol-5-yl)phenyl)-1,2,4-oxadiazole<math>(1b)^5$

A mixture of 3,4-bis(decyloxy)-N'-hydroxybenzamidine (1.11 mmol, 3.1 equiv.) and dry pyridine (8ml) was stirred under Ar atmosphere at 0 $^{\circ}$ C. To this, a solution of benzene-1,3,5-tricarboyl trichloride (0.36 mmol, 1 equiv.) in dry THF was added drop wise. The reaction mixture was refluxed for 12 h and then poured into cold water. The whole mass (a mixture of solid and water) was extracted with Chloroform (2 × 100 ml). The combined extracts were washed with water, brine, dried over anhyd.Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on neutral alumina. Elution with 20% CH₂Cl₂ hexanes yielded the desired product. Recrystallization with ethylacetate gives the pure product.

 $R_f = 0.58$ (60%CH₂Cl₂-hexane), white solid, yield: 60%; v_{max} in cm⁻¹2922.30, 2851.61, 1607.97, 1546.77, 1462.74, 1386.22, 1262.72, 1131.83 and 752.12;¹H NMR (CDCl₃, 400 MHz): δ 9.24(s, 3H, Ar), 7.80 – 7.82 (m, 3H, Ar), 7.70 (s, 3H, Ar), 7.00 (d, 3H, J = 8.4 Hz, Ar), 4.13 – 4.16(m, 6H, 3× OCH₂), 4.09(t, 6H, J = 8Hz, 3 × OCH₂), 1.29-1.91(m, 96H, 48 × CH₂), 0.86-0.89(m,18H, 6 × CH₃);¹³C NMR (CDCl₃, 100MHz): 173.30, 169.47, 152.25, 149.52, 130.75, 126.82, 121.35, 118.86, 113.18, 112.30, 69.59, 69.32, 32.15, 29.88, 29.84, 29.71, 29.66, 29.60, 29.51, 29.40,

26.31, 26.25, 22.92, 14.33. MALDI-TOF exact mass calculated for $C_{90}H_{141}N_6O_9(M+3H)$: 1450.0744, Found: 1450.0170.

Procedureforthesynthesisof3-(3,4,5-tris(decyloxy)phenyl)-5-(3,5-bis(3-(3,4,5-tris(decyloxy)phenyl)-1,2,4-oxadiazol-5-yl)phenyl)-1,2,4-oxadiazole(1c): 5

A mixture of 3,4,5-tris(decyloxy) –N'- hydroxybenzamidine (0.9 mmol, 3.1 equiv.) and dry pyridine (7ml) was stirred under Ar atmosphere at 0 $^{\circ}$ C. To this, a solution of benzene-1,3,5-tricarboyl trichloride (0.29 mmol, 1 equiv.) in dry THF was added drop wise. The reaction mixture was refluxed for 12 h and then poured into cold water. The whole mass (a mixture of solid and water) was extracted with Chloroform (2 × 100 ml). The combined extracts were washed with water, brine, dried over anhyd.Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on neutral alumina. Elution with 20% CH₂Cl₂ hexanes yielded the desired product. Recrystallization with ethylacetate gives the pure product.

 $R_f = 0.6$ (60%CH₂Cl₂-hexane), white solid, yield: 56%; v_{max} in cm⁻¹ 2921.00, 2850.86, 1603.26, 1551.65, 1441.02, 1396.59, 1353.69, 1235.95, 1125.41 and 750.74;¹H NMR (CDCl₃, 400 MHz): δ 9.27(s, 3H, Ar), 7.43 (s, 6H, Ar), 4.11 – 4.14(m, 12H, 6× OCH₂), 4.04 – 4.07(m, 6H, 3 × OCH₂), 1.28-1.89 (m, 144H, 72 × CH₂), 0.86-0.88(m, 27H, 9 × CH₃);¹³C NMR (CDCl₃, 150MHz): 173.49, 169.76, 153.88, 141.42, 131.03, 126.93, 121.14, 106.26, 73.83, 69.59, 32.16, 30.61, 29.89, 29.84, 29.64, 29.39, 26.39, 22.91, 14.32. MALDI-TOF exact mass calculated forC₁₂₀H₂₀₀N₆O₁₂(M+2H): 1917.5213, Found:1917.285.

Procedure for the synthesis of $3-(3,4,5-\text{tris}(\text{dodecyloxy})\text{phenyl})-5-(3,5-\text{bis}(3-(3,4,5-\text{tris}(\text{dodecyloxy})\text{phenyl})-1,2,4-\text{oxadiazol-}5-\text{yl})\text{phenyl})-1,2,4-\text{oxadiazole}(1\mathbf{d}):^{5}$

A mixture of 3,4,5-tris(dodecyloxy) -N'- hydroxybenzamidine(0.91 mmol, 3.1 equiv.) and dry

pyridine (4ml) was stirred under Ar atmosphere at 0 $^{\circ}$ C. To this, a solution of benzene-1,3,5tricarboyl trichloride (0.29 mmol, 1 equiv.) in dry THF was added drop wise. The reaction mixture was refluxed for 12 h and then poured into cold water. The whole mass (a mixture of solid and water) was extracted with Chloroform (2 × 100 ml). The combined extracts were washed with water, brine, dried over anhyd.Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on neutral alumina. Elution with 20% CH₂Cl₂ hexanes yielded the desired product. Recrystallization with ethylacetate gives the pure product.

 $R_f = 0.65(60\%$ CH₂Cl₂-hexane), white solid, yield: 55%; ;v_{max} in cm⁻¹2920.97, 2850.96, 1603.54, 1551.60, 1466.76, 1396.15, 1235.37, 1125.00 and 750.33;¹H NMR (CDCl₃, 400 MHz): δ 9.27(s, 3H, Ar), 7.43 (s, 6H, Ar), 4.06 – 4.14(m, 18H, 9× OCH₂), 1.27-1.88 (m, 180H, 90 × CH₂), 0.86-0.89 (m, 27H, 9 × CH₃); ¹³C NMR (CDCl₃, 100MHz): 173.47, 169.73, 153.84, 141.28, 126.89, 121.12, 110.23, 106.11, 73.81, 69.51, 32.15, 30.60, 29.99, 29.95, 29.93, 29.89, 29.84, 29.69, 29.60, 26.39, 26.34, 22.92, 14.34. MALDI-TOF exact mass calculated forC₁₃₈H₂₃₇N₆O₁₂(M+3H): 2170.8109, Found:2170.6540.

Figure S1.¹H NMR (400 MHz) spectra of 1a in CDCl₃

Figure S2.¹³C NMR (100 MHz) spectra of 1a in CDCl₃

Figure S3.¹H NMR (400 MHz) spectra of 1b in CDCl₃

Figure S4. 13 C NMR (100 MHz) spectra of **1b** in CDCl₃

Figure S5.¹H NMR (400 MHz) spectra of 1c in CDCl₃

*Figure S6.*¹³C NMR (150 MHz) spectra of **1c** in CDCl₃

Figure S7.¹H NMR (400 MHz) spectra of 1d in CDCl₃

Figure S8.¹³C NMR (100 MHz) spectra of 1d in CDCl₃

Figure S9.¹H NMR (600 MHz) spectra of 2a in CDCl₃

Figure S10.¹³C NMR (100 MHz) spectra of 2a in CDCl₃

Figure S11.¹H NMR (400 MHz) spectra of 2b in CDCl₃

Figure S12.¹³C NMR (100 MHz) spectra of 2b in CDCl₃

Figure S14.¹³C NMR (100 MHz) spectra of 2c in CDCl₃

Figure S15.¹H NMR (600 MHz) spectra of 2d in CDCl₃

Figure S16. 13 C NMR (100 MHz) spectra of 2d in CDCl₃

Figure S17.¹H NMR (600 MHz) spectra of **3a** in CDCl₃

Figure S18.¹³C NMR (100 MHz) spectra of 3a in CDCl₃

Figure S19.¹H NMR (400 MHz) spectra of **3b** in CDCl₃

Figure S20.¹³C NMR (100 MHz) spectra of 3b in CDCl₃

Figure S21.¹H NMR (600 MHz) spectra of 3c in CDCl₃

Figure S22.¹³C NMR (150 MHz) spectra of 3c in CDCl₃

Figure S23.¹H NMR (600 MHz) spectra of 3d in CDCl₃

Figure S24.¹³C NMR (100 MHz) spectra of 3d in CDCl₃

*Figure S25.*¹H NMR (400 MHz) spectra of **4b** in CDCl₃

Figure S26.¹³C NMR (100 MHz) spectra of 4b in CDCl₃

Figure S27.¹H NMR (400 MHz) spectra of 4c in CDCl₃

Figure S28.¹³C NMR (100 MHz) spectra of 4c in CDCl₃

Figure S29.¹H NMR (400 MHz) spectra of 4d in CDCl₃

Figure S30.¹³C NMR (100 MHz) spectra of 4d in CDCl₃

Figure S31.¹H NMR (400 MHz) spectra of 5c in CDCl₃

Figure S32.¹³C NMR (100 MHz) spectra of 5c in CDCl₃

Figure S33.¹H NMR (400 MHz) spectra of 5d in CDCl₃

Figure S34.¹³C NMR (100 MHz) spectra of 5d in CDCl₃

Figure S35.¹H NMR (400 MHz) spectra of 6c in CDCl₃

Figure S36.¹³C NMR (100 MHz) spectra of 6c in CDCl₃

Figure S38.¹³C NMR (150 MHz) spectra of 6d in CDCl₃

(iii) Polarizing Optical Microscopy

*Figure S39.*POM images of compound **1a**at 87 °C (a); **1b** at 111 °C (b); **1c** at 135 °C (c); at 111 °C (d); at 25 °C (e); **1d** at 148 °C (f); at 125 °C (g); at 40 °C (h) and at 30 °C (i) on a cooling process from isotropic melt.

Figure S40.POM image of the thin film of compound**1b** in xerogel state under parallel polarizers (obtained from the dropcasting of 4mM dodecane solution)

(iv) Thermogravimetric Analysis

Figure S41. TGA curves of the compounds **1a-d (a)** and **2a-d (b)** carried out at a rate of 10 °C/min **(v) Differential Scanning Calorimetry**

Figure S42.DSC thermograms of compounds **1a-d** showing the second heating (red trace) and the first cooling (blue trace) scans at a scanning rate of 5.0 $^{\circ}$ C min⁻¹.

(vi) X-ray Diffraction studies

Figure S43. XRD profiles depicting the intensity against the 2 θ obtained for the Col_h phase of compound 1b at 85 °C (a) and at 100 °C (a) (inset shows the XRD image pattern obtained)

Figure S44. XRD profiles depicting the intensity against the 2 θ obtained for the Col_h phase of compound 1c at 145 °C (a); at85°C (b) and at 25°C (c) (inset shows the XRD image pattern obtained)

Figure S45. XRD profiles depicting the intensity against the 2θ obtained for the Col_h phase of compound **1d** at 130° C (a) and at 50° C (b) (inset shows the XRD image pattern obtained)

Table 1.Results of (hkl) indexation of XRD profiles of the compound 1b in xerogel state at room temperature

Compounds (D/Å)	Phase (T/°C)	$d_{\rm obs}({\rm \AA})$	$d_{\rm cal}({\rm \AA})$	Miller indices <i>hkl</i>	Lattice parameters (Å)
1b (42.21)	Col _r (RT)	30.61 24.91 10.67 9.11 7.11 6.18 5.96 5.42 5.05 3.79	30.61 24.91 11.33 9.08 6.65 6.22 5.95 5.66 4.98 3.91	200 110 320 330 240 440 540 640 500 400	<i>a</i> = 61.22 <i>b</i> = 27.26

Figure S46. Variation in the emission wavelength with respect to temperature for compound **1b** (4mM solution in dodecane, on the right hand side note the change in the emission on irradiation of long wavelength UV light with the change of temperature)

Figure S47. Excitation and emission spectra of compounds **1a-d** in micromolar THF solution (a), (b) and the same in thin film state (c), (d).

Table 2. Photophysical properties of star-shaped molecules in solution and thin film

	Solutio	n ^a	Thin film		
Entry	Excitation ^b (nm)	Emission (nm)	Excitation (nm)	Emission ^c (nm)	
1a	255	299	339, 380	410	
1b	255, 291	314	351	484	
1c	256, 291	311	317, 367	502	
1d	258, 291	309	363	496	
^a Micromolar THF solution; ^b Emission monitored at λ_{max} ; ^c Excitation monitored at λ_{max}					

Figure S48. Fluorescent Microscopy Image of the thin film of the xerogel obtained for compound **1b** (4mM solution in dodecane, scale bar 100 μ m)

(viii) Cyclic Voltammetry

Figure S49. Cyclic voltammograms of ferrocene (a); compound **1a** (b); **1b** (c) and **1c** (d) in anhydrous DCM solution of tetra-*n*-butylammonium perchlorate (0.1 M)(The half-wave potential of the ferrocene/ ferrocenium (Fc/Fc⁺) redox couple ($E_{1/2}$, $_{Fc,Fc}^+$) was found to be 0.46 V relative to the Ag/Ag⁺ reference electrode).

(ix) Gelation studies

Entry	Solvent	Properties	Critical Gel Concentration (wt.%)	$T_{gel}(^{O}C)$	
1	Hexane	G (O)	0.67	66	
2	Decane	G (O)	0.62	68	
3	Dodecane	G (0)	0.52	70	
4	Hexadecane	G (O)	0.47	75	
5	Toluene	S			
6	Benzene	S			
7	<i>m</i> -xylene	S			
8	DCM	S			
9	Chloroform	S			
10	THF	S			
11	<i>n</i> -butanol	Р			
12	Ethanol	Р			
13	DMSO	Ι			
G = stable gel; S = soluble; P = precipitate; I = insoluble; O = opaque; The critical gelation concentration (wt. %) is the minimum concentration necessary for gelation; T_{gel} (°C) is the thermal stability of the gels determined by 'dropping ball' method (weight of the ball is 68.5 mg)					

Table 3. Gelation properties of compound 1b

Compound **1b** with six decyloxy chains stabilized the gel formation in *n*-hexane, *n*-decane, *n*-dodecane and *n*-hexadecane with very low critical gelation concentration (CGC) of 0.67 wt %, 0.62 wt %, 0.52 wt % and 0.47 wt % respectively. The gel was prepared by dissolving 6.7 mg of gelator molecule **1b** in 1ml of *n*-hexane at higher temperatures and allowing the solution to cool to room temperature in a closed vial. Gel formation was confirmed by the failure of soft mass to flow on inverting the glass vial. Similarly the gel were prepared by dissolving 6.2 mg, 5.2 mg and 4.7 mg in 1ml of *n*-decane, *n*-dodecane and *n*-hexadecane respectively at higher temperatures and allowing the solution to cool to room temperature in a closed vial. The thermal stability of the gels was measured by dropping ball method (Fig.10g).

Figure S50. Photograph of the gel after keeping inverted for 25 days showing the formation of xerogel under daylight and UV light (λ_{max} = 365 nm)

(x) Single Crystal XRD studies

Empirical formula C_{60} H78 N ₆ O6Formula weight979.28Crystal habit, colourneedle, colorlessCrystal size, mm ³ $0.36 \times 0.20 \times 0.18$ Temperature, T296(2) KWavelength, λ 0.71073 ÅCrystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V Z Calculated density, Mg·m ³ Absorption coefficient, μ $P(000)$ Limiting indicesLimiting indices $-11 \le 411, -11 \le 4\le 11, -35 \le 1\le 35$ Reflection collected / uniqueCompleteness to θ Max, and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R I = 0.0674, wR2 = 0.1695$ R indices (all data) $R I = 0.2203$ Largest diff, peak and hole 0.232 and -0.249 e, Å ³		C II N O
Formula weight $9/9.28$ Crystal habit, colourneedle, colorlessCrystal size, mm ³ $0.36 \times 0.20 \times 0.18$ Temperature, T $296(2)$ KWavelength, λ 0.71073 ÅCrystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V Z Calculated density, Mg·m ⁻³ Absorption coefficient, μ $P(000)$ 0.69° to 25.00° Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375$ [$R(int) = 0.0694$]Completeness to θ Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices [$l > 2sigma(l)$] $R indices (all data)$ $Rincies (all data)$ $Rincies (diff, peak and hole0.232 and -0.249 e, Å-3$		C_{60} H ₇₈ N ₆ O ₆
Crystal habit, colourneedle, colorlessCrystal size, mm³ $0.36 \times 0.20 \times 0.18$ Temperature, T $296(2)$ KWavelength, λ 0.71073 ÅCrystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $\alpha = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V 2830.4(3) Å^3ZCalculated density, Mg·m³Absorption coefficient, μ $P(000)$ 0.69° to 25.00°Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / uniqueCompleteness to θ Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices $[l>2sigma(l)]$ $R indices (all data)$ $R indices (all data)$ $R indices (all data)$ $R indices (all data)$ $Rarge st diff. peak and hole$ 0.232 and -0.249 e.Å-3	Formula weight	9/9.28
Crystal size, mm² $0.36 \times 0.20 \times 0.18$ Temperature, T $296(2)$ K Wavelength, λ 0.71073 Å Crystal system triclinic Space group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ V volume, V $2830.4(3)$ Å ³ Z 2 Calculated density, Mg·m³ 1.149 Mg/m³ Absorption coefficient, μ 0.074 mm ¹ $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375$ $[R(int) = 0.0694]$ Completeness to θ 0.941 % Max, and min. transmission 0.987 and 0.982 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit or F^2 1.029 Final R indices $[l > 2sigma(l)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$	Crystal habit, colour	needle, colorless
Temperature, T296(2) KWavelength, λ 0.71073 ÅCrystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, VZCalculated density, Mg·m ³ Absorption coefficient, μ $P(000)$ Uniting indices $P(11 \le M_{\pm} = 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $P(114/9375 [R(int) = 0.0694]$ Completeness to θ Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices [$l > 2sigma(l)$] $R indices (all data)$ $R indices (all data)$ $R indices (all data)$ $R rest diff. peak and hole$ 0.232 and -0.249 e.Å. ³	Crystal size, mm ³	$0.36 \times 0.20 \times 0.18$
Wavelength, λ 0.71073 ACrystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V 2830.4(3) Å^3 Z Calculated density, Mg·m ³ Absorption coefficient, μ $P - 1$ $F(000)$ 1056 θ range for data collection 0.69° to 25.00°Limiting indices $-11 \le t \le 11, -35 \le t \le 35$ Reflection collected / unique $41914/9375$ [$R(int) = 0.0694$]Completeness to θ Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices [$I \ge 2$ sigma(I)] $R 1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R 1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole	Temperature, T	296(2) K
Crystal systemtriclinicSpace group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ ZCalculated density, Mg·m-3Absorption coefficient, μ $P(000)$ 0.74 mm^{-1} $F(000)$ 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le h \le 11, -35 \le l \le 35$ Reflection collected / uniqueCompleteness to θ Max, and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices $[I>2sigma(I)]$ $R 1 = 0.0674, wR2 = 0.1695$ R indices (all data)Largest diff. peak and hole 0.232 and -0.249 e.Å-3	Wavelength, λ	0.71073 A
Space group $P-1$ Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ ZCalculated density, Mg·m-3Absorption coefficient, μ $F(000)$ 0.074 mm^{-1} $F(000)$ 0.69° to 25.00°Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 Final R indices [$I > 2sigma(I)$] $R 1 = 0.0674, wR2 = 0.1695$ R indices (all data) $Ration (all data)$ $Ration (al$	Crystal system	triclinic
Unit cell dimensions $a = 9.5084(6)$ Å $b = 10.1887(6)$ Å $c = 29.8085(17)$ Å $a = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V $2830.4(3)$ Å ³ Z2Calculated density, Mg·m ³ 1.149 Mg/m ³ Absorption coefficient, μ 0.074 mm ⁻¹ $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375$ [$R(int) = 0.0694$]Completeness to θ 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [$I > 2sigma(I)$] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å- ³	Space group	P-1
$b = 10.1887(6) \text{ Å}$ $c = 29.8085(17) \text{ Å}$ $\alpha = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ Volume, V 2830.4(3) Å^3 Z Calculated density, Mg·m ³ Absorption coefficient, μ $P(000)$ 1056 θ range for data collection Limiting indices $-11 \le h \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission $0.987 \text{ and } 0.982$ Refinement method Full-matrix least-squares on F^2 $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ $R indices (all data)$ $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.Å}^{-3}$	Unit cell dimensions	a = 9.5084(6) Å
$c = 29.8085(17) \text{ Å}$ $\alpha = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ $2830.4(3) \text{ Å}^{3}$ Z Calculated density, Mg·m ³ 1.149 Mg/m ³ Absorption coefficient, μ 0.074 mm ⁻¹ $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices -11 $\leq h \leq 11, -35 \leq l \leq 35$ Reflection collected / unique 41914/9375 [R(int) = 0.0694] Completeness to θ 0.941 % Max. and min. transmission 0.987 and 0.982 Refinement method Full-matrix least-squares on F^{2} Data / restraints / parameters 9375 / 0 / 652 Goodness-of-fit on F^{2} 1.029 Final R indices [$l > 2sigma(l)$] R 1 = 0.0674, wR2 = 0.1695 R indices (all data) R 2 Refinement method 0.232 and -0.249 e.Å ⁻³		b = 10.1887(6) Å
$\alpha = 87.885(4)^{\circ}$ $\beta = 83.205(4)^{\circ}$ $\gamma = 80.832(4)^{\circ}$ $2830.4(3) Å^{3}$ Z Calculated density, Mg·m ³ 1.149 Mg/m ³ Absorption coefficient, μ 0.074 mm ⁻¹ $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices -11 $\leq h \leq 11, -35 \leq l \leq 35$ Reflection collected / unique 41914/9375 [R(int) = 0.0694] Completeness to θ 0.941 % Max. and min. transmission 0.987 and 0.982 Refinement method Full-matrix least-squares on F^{2} Data / restraints / parameters 9375 / 0 / 652 Goodness-of-fit on F^{2} 1.029 Final R indices [I>2sigma(I)] R1 = 0.0674, wR2 = 0.1695 R indices (all data) R2 Calculated density, Mg·m ³ Largest diff. peak and hole 0232 and -0.249 e.Å ³		c = 29.8085(17) Å
$\beta = 83.205(4)^{\circ}$ Volume, V $2830.4(3) \text{ Å}^{3}$ Z Calculated density, Mg·m ⁻³ Absorption coefficient, μ $P(000)$ 1.149 Mg/m^{3} Absorption coefficient, μ 0.074 mm^{-1} $F(000)$ 1056 θ range for data collection $0.69^{\circ} \text{ to } 25.00^{\circ}$ Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(\text{int}) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission $0.987 \text{ and } 0.982$ Refinement method Full-matrix least-squares on F^{2} $9375 / 0 / 652$ Goodness-of-fit on F^{2} 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ $R indices (all data)$ $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.Å}^{-3}$		$\alpha = 87.885(4)^{\circ}$
Volume, V $\gamma = 80.832(4)^{\circ}$ Z $2830.4(3)$ Å ³ Z 2 Calculated density, Mg·m ⁻³ 1.149 Mg/m ³ Absorption coefficient, μ 0.074 mm ⁻¹ $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le k \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375$ [$R(int) = 0.0694$]Completeness to θ 0.941 %Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [$I > 2sigma(I)$] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å. ³		$\beta = 83.205(4)^{\circ}$
Volume, V $2830.4(3)$ Å 3 Z 2 Calculated density, Mg·m 3 1.149 Mg/m 3 Absorption coefficient, μ 0.074 mm 1 $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/$ 9375 $[R(int) = 0.0694]$ Completeness to θ 0.941 %Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674$, $wR2 = 0.1695$ R indices (all data) $R1 = 0.1543$, $wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å 3		$\gamma = 80.832(4)^{\circ}$
Z2Calculated density, Mg·m-3 1.149 Mg/m^3 Absorption coefficient, μ 0.074 mm^{-1} $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission $0.987 \text{ and } 0.982$ Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.h}^3$	Volume. V	2830.4(3) Å ³
Calculated density, Mg·m-3 1.149 Mg/m^3 Absorption coefficient, μ 0.074 mm^{-1} $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission $0.987 \text{ and } 0.982$ Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.h}^3$	Z	2
Absorption coefficient, μ 0.074 mm^{-1} $F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.Å}^{-3}$	Calculated density, Mg·m ⁻³	1.149 Mg/m ³
$F(000)$ 1056 θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å-3	Absorption coefficient, μ	0.074 mm^{-1}
θ range for data collection 0.69° to 25.00° Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å ⁻³	F(000)	1056
Limiting indices $-11 \le h \le 11, -11 \le k \le 11, -35 \le l \le 35$ Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941% Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å-3	θ range for data collection	0.69° to 25.00°
Reflection collected / unique $41914/9375 [R(int) = 0.0694]$ Completeness to θ 0.941 %Max. and min. transmission0.987 and 0.982Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters9375 / 0 / 652Goodness-of-fit on F^2 1.029Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole0.232 and -0.249 e.Å-3	Limiting indices	-11 ≤ <i>h</i> ≤ 11, -11 ≤ <i>k</i> ≤ 11, -35 ≤ <i>l</i> ≤ 35
Completeness to θ 0.941 %Max. and min. transmission0.987 and 0.982Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters9375 / 0 / 652Goodness-of-fit on F^2 1.029Final R indices [I>2sigma(I)]R1 = 0.0674, wR2 = 0.1695R indices (all data)R1 = 0.1543, wR2 = 0.2203Largest diff. peak and hole0.232 and -0.249 e.Å ⁻³	Reflection collected / unique	41914/9375 [R(int) = 0.0694]
Max. and min. transmission 0.987 and 0.982 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å-3	Completeness to θ	0.941 %
Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å ⁻³	Max. and min. transmission	0.987 and 0.982
Data / restraints / parameters $9375 / 0 / 652$ Goodness-of-fit on F^2 1.029 Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å ⁻³	Refinement method	Full–matrix least–squares on F^2
Goodness-of-fit on F^2 1.029 Final R indices [I>2sigma(I)] $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å ⁻³	Data / restraints / parameters	9375 / 0 / 652
Final R indices $[I>2sigma(I)]$ $R1 = 0.0674, wR2 = 0.1695$ R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.Å}^{-3}$	Goodness-of-fit on F^2	1.029
R indices (all data) $R1 = 0.1543, wR2 = 0.2203$ Largest diff. peak and hole 0.232 and -0.249 e.Å-3	Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0674, wR2 = 0.1695
Largest diff. peak and hole $0.232 \text{ and } -0.249 \text{ e.}\text{Å}^{-3}$	R indices (all data)	R1 = 0.1543, wR2 = 0.2203
	Largest diff. peak and hole	0.232 and -0.249 e.Å ⁻³

Table 4. Crystal data and structure refinement for 1a, [C₆₀ H₇₈ N₆ O₆].⁶

Bond distances							
Bond	(Å)	Bond	(Å)	Bond	(Å)	Bond	(Å)
distance		distance		distance		distance	
C1-C2	1.388(4)	C2-C3	1.389(4)	C3 –C4	1.408(4)	C4-C5	1.382(4)
С5 –С6	1.395(4)	C6 –C1	1.395(4)	С3 – С7	1.471(4)	C7 –N1	1.294(4)
С7 – О2	1.345(3)	N1-C8	1.382(4)	O2-N2	1.424(3)	N2-C8	1.305(4)
С8-С9	1.465(4)	C9-C10	1.387(4)	C10-C11	1.373(4)	C11-C12	1.390(4)
C12-C13	1.379(4)	C13-C14	1.381(4)	C14-C9	1.385(4)	C12-O4	1.362(4)
O4-C15	1.440(4)	C5-C25	1.459(4)	C25-O1	1.344(3)	C25-N3	1.296(4)
01-N4	1.427(3)	N3-C25	1.296(4)	C26-N3	1.390(3)	C26-N4	1.311(4)
C26-C27	1.458(4)	C27-C28	1.379(4)	C28-C29	1.376(4)	C29-C30	1.387(4)
C30-C31	1.394(4)	C31-C32	1.372(4)	C27-C32	1.388(4)	C30-O6	1.366(3)
O6-C33	1.436(3)	C1-C43	1.460(4)	C43-O3	1.338(4)	C43-N6	1.294(4)
N5-C44	1.300(4)	N6-C44	1.378(4)	C44-C45	1.472(4)	C45-C46	1.379(4)
C46-C47	1.369(5)	C47-C48	1.381(5)	C48-C49	1.368(4)	C49-C50	1.390(4)
C50-C45	1.369(4)	C48-O5	1.371(4)	O5-C51	1.422(4)		

Bond angles							
Bond angle	(°)	Bond angle	(°)	Bond angle	(°)	Bond angle	(°)
C2-C1-C6	119.0(3)	C2-C1-C43	119.1(3)	C1-C2-C3	121.1(3)	C2 –C3– C4	119.7(3)
С2-С3-С7	117.0(3)	C4 –C3– C7	123.2(3)	С5 –С4 –С3	119.2(3)	C4-C5-C6	120.7(3)
C4-C5-C25	122.3(3)	C6 - C5 - C25	117.0(3)	C1 -C6- C5	120.3(3)	N1 C7O2	113.7(3)
N1-C7-C3	126.3(3)	O2 –C7– C3	119.9(3)	C7 –N1– C8	102.6(3)	N2 - C8 - N1	114.6(3)
N2 -C8- C9	124.2(3)	N1-C8-C9	121.2(3)	C7- O2- N2	105.8(2)	C14-C9-C10	117.8(3)
C14 - C9 - C8	122.6(3)	C10-C9-C8	119.6(3)	С11-С10-С9	121.3(3)	C10-C11-C12	120.1(3)
O4 -C12-C13	125.3(3)	O4-C12-C11	115.2(3)	C13-C12-C11	119.5(3)	C12-C13-C14	119.6(3)
C13-C14-C9	121.7(3)	C12-O4-C15	119.1(3)	N3 -C25-O1	113.5(3)	N3-C25-C5	126.7(3)
O1 -C25- C5	119.8(3)	C25-O1-N4	105.9(2)	C26-N4-O1	103.8(2)	N4- C26- N3	113.5(3)
N4-C26-C27	124.3(3)	N3 - C26 - C27	122.2(3)	C25-N3-C26	103.3(3)	C28-C27-C32	118.1(3)
C28-C27-C26	121.6(3)	С32-С27-С26	120.3(3)	C29-C28-C27	121.6(3)	C28-C29-C30	119.6(3)
O6 -C30-C29	125.1(3)	O6 -C30-C31	115.3(3)	C29-C30-C31	119.6(3)	C32-C31-C30	119.5(3)
C31-C32-C27	121.5(3)	C30-O6-C33	117.8(2)	N6- C43- O3	113.5(3)	N6-C43-C1	128.8(3)
O3 -C43- C1	117.7(3)	C43-O3-N5	105.8(2)	C44-N5-O3	103.7(3)	N5-C44-N6	114.0(3)
N5 -C44-C45	121.9(3)	N6-C44-C45	124.0(3)	C43-N6-C44	103.0(3)	C50-C45-C46	118.3(3)
C50-C45-C44	120.7(3)	C46-C45-C44	120.8(3)	C47-C46-C45	121.3(4)	C46-C47-C48	120.2(3)
C49-C48-O5	125.8(4)	C49-C48-C47	119.1(3)	O5-C48-C47	115.0(3)	C48-C49-C50	120.2(3)
C45-C50-C49	120.9(3)	C48-O5-C51	118.8(3)				

Figure S51. Molecular diameter of compound 1a.

Figure S52. π –Interactions between the centroid of the oxadiazole ring of one molecule and the centroid of the oxadiazole ring of the neighboring molecule and centroid of the central benzene ring of one molecule and centroid of the peripheral benzene ring of other molecule.

*Figure S53.*Non-covalent C-H[…]N hydrogen bonding interaction between the hydrogen atom (H29) of the peripheral benzene ring and the (N2) of the oxadiazole ring

Figure S54. Vanderwaals' interaction between the peripheral alkyl chains of two molecules.

Figure S55. Lamellar arrangement of molecules of compound 1b

Figure S56. Energy minimized structures of compounds 1a (a); 1b (b) and 1c (c)

References

- 1. S. K. Pathak, R. K. Gupta, S. Nath, D. S. Shankar Rao, S. K. Prasad and A. S. Achalkumar, *J. Mater. Chem. C*.2015, **3**, 2940-2952.
- 2. A.S. Achalkumar, C.V. Yelamaggad, Tetrahedron Letters, 2012, 53, 7108–7112.
- 3.S. T. Chill and R. C. Mebane, Synthetic Communications, 2009, 39, 3601–3606.
- 4. A. Kivrak, M. Zora, Tetrahedron, 2014, 70, 817-831.
- 5. H. Gallardo, M. Ferreira, A. A. Vieira, E. Westphal, F. Molin, J. Eccher, I. H. Bechtold, *Tetrahedron*, 2011, **67**, 9491-9499.
- 6. CCDC 1058790 contains the supplementary crystallographic data for compound **1a.** These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html