Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

### **Supporting Information**

## A New Approach to Polycyclic Azaarenes: Visible-light Photolysis of Vinyl Azides in the Synthesis of Diazabenzopyrene and Diazaperylene.

Julia A. Schneider, Dmitrii F. Perepichka\*

\*McGill University, Department of Chemistry, 801 Sherbrooke Street West, H3A 0B8, QC, Montreal, Canada.

### **Table of contents**

| Additional spectroscopy & cyclic voltammetry & calculations | Page 2-4    |
|-------------------------------------------------------------|-------------|
| Experimental Section                                        | Page 5      |
| NMR Data                                                    | Pages 6-14  |
| Computational data                                          | Pages 16-21 |



**Figure S1.** The absorption spectra showing the photocyclization of **5** at room temperature under ambient lighting. The broad peak of **5** is replaced by the sharper vibronic bands of cyclized **6** and **7**. The inset shows the appearance and disappearance of intermediate absorption signals.



**Figure S2.** Absorption (—) and emission (- -) spectra of **6** in CH<sub>2</sub>Cl<sub>2</sub>;  $\lambda^{\text{exc}}$  = 300 nm.

**Table S1.** Ratios of isomers **6** and **7** in relation to the temperature of the photocyclization reaction.

| Temperature | Loading                                          | Crude yield | 6:7 Ratio |
|-------------|--------------------------------------------------|-------------|-----------|
| RT          | 0.10 g in 50 mL CH <sub>2</sub> Cl <sub>2</sub>  | 98%         | 62:38     |
| −20 °C      | 0.50 g in 100 mL CH <sub>2</sub> Cl <sub>2</sub> | +100%       | 50:50     |
| −50 °C      | 0.30 g in 100 mL CH <sub>2</sub> Cl <sub>2</sub> | +100%       | 42:58     |
| -80 °C      | 0.015 g in 4 mL CH <sub>2</sub> Cl <sub>2</sub>  | n/a         | 38:62     |



Figure S3. Cyclic voltammetry of 6 (CH<sub>2</sub>Cl<sub>2</sub>/0.1M TBAPF<sub>6</sub>).



**Figure S4.** Emission spectra of **10** (a) and **11** (b) in increasing concentrations and normalized to the third emission band. The observed changes in the relative intensities of the vibronic bands can be explained by self-absorption.



Figure S5. a) Emission spectra of 10 in MeCN-water solutions show polarity-induced enhanced emission. b) Plot of variations in PL peak intensities of 10 and 11 versus water fraction.

|    | Transition              | Orbitals      | Wavelength | Oscillator strength |
|----|-------------------------|---------------|------------|---------------------|
|    |                         |               | (nm)       |                     |
| 10 | $S_0 \rightarrow S_1$   | HOMO-1→LUMO+1 | 325.3      | 0.128               |
|    |                         | HOMO-1→LUMO+2 |            |                     |
|    |                         | HOMO→LUMO     |            |                     |
|    | $S_0 \rightarrow S_2$   | HOMO-3→LUMO+1 | 311.1      | 0.002               |
|    |                         | HOMO-2→LUMO   |            |                     |
|    | $S_1 \rightarrow S_0^a$ | LUMO+1→HOMO-1 | 340.2      | 0.116               |
|    |                         | LUMO+2→HOMO-1 |            |                     |
|    |                         | LUMO→HOMO     |            |                     |
|    |                         |               |            |                     |
| 11 | $S_0 \rightarrow S_1$   | HOMO→LUMO     | 410.6      | 0.3403              |
|    | $S_1 \rightarrow S_0^a$ | LUMO→HOMO     | 457.7      | 0.3423              |

**Table S2.** Calculated transitions by TD-DFT.

a)  $S_1 \rightarrow S_0$  transitions calculated by re-optimizing the geometry of the excited state with TD-DFT (B3LYP/6-31d(d)).

#### **Experimental Section**

UV/Vis absorption and photoluminescence spectra were measured in CH<sub>2</sub>Cl<sub>2</sub> with a JACSO V670 UV-Vis-NIR spectrometer and a Varian Eclipse Fluorimeter, respectively. The fluorescence quantum yields were determined relative to anthracene in EtOH ( $\Phi$  = 0.27). Solid state fluorescence was acquired for powders on a FluoroLog-3 spectrofluorometer (Horiba Jobin Yvon Inc.).

Cyclic voltammetry was performed on a CH670 potentiostat from CH-Instruments in a three-electrode cell using a 0.1M TBAPF6 electrolyte solution in acetonitrile, tetrahydrofuran or CH<sub>2</sub>Cl<sub>2</sub>, at scan rates of 100 mV s<sup>-1</sup>. Pt wire was used as the working and counter electrodes and a Ag/AgCl electrode as reference. All potentials were adjusted vs. ferrocene (internal standard).

Geometries, molecular orbital energies, and electronic transitions were calculated at the B3LYP/6-31G(d) level of theory using the Gaussian 09W program.<sup>11</sup> Frequency calculations were done for all optimized geometries, confirming these as energy minima.

#### Synthetic procedures of known compounds

*Ethyl 2-azidoacetate* (Warning: Small azide derivatives are potentially explosive. Reaction and isolation performed behind blast shield.) Ethyl chloroacetate (10 mL, 0.093 mol) in EtOH (40 mL) was cooled to 0 °C in an ice bath. Sodium azide (7.0 g, 0.11 mol) was weighed out, dissolved in H<sub>2</sub>O (20 mL) and added to the cold reaction mixture. The solution was stirred at 0 °C for 20 minutes before being brought to reflux for 4.5 hrs. After cooling, the reaction mixture was washed with H<sub>2</sub>O (60 mL) and extracted with Et<sub>2</sub>O (3 × 50 mL). The combined organic layers were washed with H<sub>2</sub>O (3 × 50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed in vacuo to afford a clear oil (11.0 g, 95% yield), which was stored in a freezer. NMR data was in agreement with literature.<sup>2</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 25°C)  $\delta$  4.29 (q, J = 7.2 Hz, 2H), 3.88 (s, 2H), 1.34 (t, J = 7.2 Hz, 3H). <sup>13</sup>CNMR (CDCl<sub>3</sub>, 125 MHz, 25°C)  $\delta$  168.3, 61.8, 50.3, 14.04.

*Anthracene-9,10-dicarbaldehyde* (4) In a dry flask, 2.5 M n-butyllithium in hexane (19 mL, 0.13 mol) was added dropwise to a solution of 9,10-dibromoanthracene (6.4 g, 19

<sup>&</sup>lt;sup>1</sup> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B., et al. Gaussian09 Revision D.01., Gaussian Inc. Wallingford CT 2009.

<sup>&</sup>lt;sup>2</sup> F. Alonso, Y. Moglie, G. Radivoy and M. Yus, *Eur. J. Org. Chem.* **2010**, *10*, 1875

mmol) in ether (250 mL) at –55 °C under a N<sub>2</sub> atmosphere. The addition complete the reaction stirred for 20 min at this temperature and was then warmed to 35 °C and stirred for 1 hr more. The reaction mixture was then cooled to –75 °C and DMF (6.0 mL, 78 mmol) was added. The reaction mixture was allowed to warm to room temperature, stirred overnight and was then quenched with water. A majority of the solvent was removed in vacuo and the product was precipitated with water. The product was filtered, rinsed with water and then purified by column chromatography using a gradient of 100% hexane to 100% chloroform to afford bright orange crystals (2.4 g, 54% yield). NMR data was in agreement with literature.<sup>3</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 25°C)  $\delta$  11.51 (s, 2H), 8.77 (dd, *J* = 6.9, 3.3 Hz, 4H). <sup>13</sup>CNMR (CDCl<sub>3</sub>, 125 MHz, 25°C)  $\delta$  194.3, 131.8, 130.2, 128.4, 124.2.



<sup>1</sup>H NMR spectrum of **5** (bottom) and a mixture of **5** and the azirine intermediate (top) in CDCl<sub>3</sub>.

<sup>&</sup>lt;sup>3</sup> A. Lee, M. Grace, A. Meyer and K. Tuck, *Tetrahedron Letters*, **2010**, *51*, 1161



<sup>1</sup>H NMR spectrum of crude compounds **6** and **7** in CDCl<sub>3</sub>.



<sup>13</sup>C NMR spectrum of compound **3** in CDCl<sub>3</sub>.







<sup>13</sup>C NMR spectrum of compound **5** in CDCl<sub>3</sub>.

0



 $^{13}\text{C}$  NMR spectrum of compound 6 in CDCl3.



 $^{13}\text{C}$  NMR spectrum of compound 8 in (CD<sub>3</sub>)<sub>2</sub>SO.



<sup>13</sup>C NMR spectrum of compound **10** in CDCl<sub>3</sub>.



<sup>13</sup>C NMR spectrum of compound **11** in (CD<sub>3</sub>)<sub>2</sub>SO<sub>3</sub> at 70 °C.

**Computational data for 6** (SCF total energy = – 1335.86041416 hartrees)



|      | Coordinates (Angstroms) |          |          |
|------|-------------------------|----------|----------|
| Atom | Х                       | Y        | Z        |
| 1    | 0.355116                | 4.340952 | -0.12501 |
| 2    | 0.355071                | 3.003521 | 0.125481 |
| 3    | 1.587289                | 2.274221 | 0.260092 |
| 4    | 2.822883                | 2.971544 | 0.132033 |
| 5    | 2.822931                | 4.372699 | -0.13191 |
| 6    | 1.587383                | 5.070137 | -0.2598  |
| 7    | 4.041362                | 2.255358 | 0.271962 |
| 8    | 5.312964                | 2.973243 | 0.134742 |
| 9    | 5.313012                | 4.37077  | -0.13494 |
| 10   | 4.041459                | 5.088772 | -0.272   |
| 11   | 6.547967                | 2.306575 | 0.263234 |
| 12   | 7.749045                | 2.98392  | 0.132543 |
| 13   | 7.749092                | 4.359866 | -0.13304 |
| 14   | 6.54806                 | 5.037323 | -0.26359 |
| 15   | 3.937998                | 6.453721 | -0.54235 |
| 16   | 2.673515                | 7.054846 | -0.6342  |
| 17   | 1.522845                | 6.395281 | -0.49779 |
| 18   | 1.522663                | 0.949082 | 0.498092 |
| 19   | 2.673288                | 0.289395 | 0.634311 |
| 20   | 3.937809                | 0.890418 | 0.542326 |
| 21   | 2.649412                | 8.525387 | -0.99507 |
| 22   | 3.582597                | 9.013025 | -1.5988  |
| 23   | 1.596208                | 9.300299 | -0.68235 |
| 24   | 0.573762                | 8.966967 | 0.287952 |

| 48<br>48<br>48 | 14 - 26<br> | 38<br>38 |          |
|----------------|-------------|----------|----------|
| 25             | -0.03262    | 10.2816  | 0.747372 |
| 26             | 2.649136    | -1.18113 | 0.995279 |
| 27             | 1.596       | -1.95614 | 0.682527 |
| 28             | 3.582227    | -1.66868 | 1.599226 |
| 29             | 0.573759    | -1.62321 | -0.28813 |
| 30             | -0.03237    | -2.93804 | -0.7473  |
| 31             | -0.5672     | 4.90299  | -0.23142 |
| 32             | -0.56729    | 2.441571 | 0.232023 |
| 33             | 6.566333    | 1.242299 | 0.468618 |
| 34             | 8.687027    | 2.44637  | 0.236595 |
| 35             | 8.687111    | 4.897329 | -0.23721 |
| 36             | 6.5665      | 6.101597 | -0.46897 |
| 37             | 4.802166    | 7.08402  | -0.70472 |
| 38             | 4.80194     | 0.260044 | 0.704595 |
| 39             | 1.01896     | 8.419612 | 1.124042 |
| 40             | -0.16553    | 8.317818 | -0.1845  |
| 41             | -0.45633    | 10.82926 | -0.10024 |
| 42             | 0.721624    | 10.91553 | 1.223954 |
| 43             | -0.83359    | 10.08814 | 1.469883 |
| 44             | 1.019089    | -1.07606 | -1.12428 |
| 45             | -0.16573    | -0.974   | 0.18394  |
| 46             | -0.45622    | -3.4855  | 0.10037  |
| 47             | 0.722055    | -3.57204 | -1.22352 |
| 48             | -0.83319    | -2.74489 | -1.47006 |

# **Computational data for 7** (SCF total energy = – -1335.85071464 hartrees)







номо

LUMO

|      | Coord    | linates (Angs | troms)   |
|------|----------|---------------|----------|
| Atom | Х        | Y             | Z        |
| 1    | -0.54369 | 5.89812       | -1.88808 |
| 2    | -1.18043 | 4.680904      | -1.79265 |
| 3    | -0.46009 | 3.521464      | -1.44651 |
| 4    | 0.905833 | 3.56405       | -1.19111 |
| 5    | 1.582661 | 4.818744      | -1.28408 |
| 6    | 0.849075 | 5.993931      | -1.63914 |
| 7    | 1.683983 | 2.369097      | -0.82357 |
| 8    | 3.084294 | 2.498386      | -0.56607 |
| 9    | 3.761106 | 3.753096      | -0.65895 |
| 10   | 2.982988 | 4.948021      | -1.02664 |
| 11   | 3.817881 | 1.323197      | -0.21101 |
| 12   | 5.210616 | 1.41904       | 0.038097 |
| 13   | 5.847318 | 2.636289      | -0.05715 |
| 14   | 5.126989 | 3.795722      | -0.40333 |
| 15   | 3.534181 | 6.21449       | -1.13305 |
| 16   | 2.725563 | 7.310447      | -1.51028 |
| 17   | 1.431248 | 7.220034      | -1.75694 |
| 18   | 1.132834 | 1.102586      | -0.71741 |
| 19   | 1.941461 | 0.006623      | -0.34022 |
| 20   | 3.235737 | 0.097068      | -0.09337 |
| 21   | 3.400796 | 8.666644      | -1.53625 |
| 22   | 4.394011 | 8.854531      | -0.86422 |
| 23   | 2.905568 | 9.67895       | -2.26817 |

| 24 | 1.924876 | 9.547037 | -3.32651 |
|----|----------|----------|----------|
| 25 | 2.071151 | 10.77579 | -4.20711 |
| 26 | 1.266307 | -1.34962 | -0.31447 |
| 27 | 0.273507 | -1.53766 | -0.98706 |
| 28 | 1.760968 | -2.36172 | 0.418133 |
| 29 | 2.741719 | -2.22965 | 1.47641  |
| 30 | 2.595677 | -3.45842 | 2.35701  |
| 31 | -1.07481 | 6.806994 | -2.15112 |
| 32 | -2.24686 | 4.604697 | -1.98357 |
| 33 | -0.99739 | 2.581799 | -1.38001 |
| 34 | 5.741742 | 0.510167 | 0.30114  |
| 35 | 6.913715 | 2.712528 | 0.133946 |
| 36 | 5.664256 | 4.735413 | -0.46968 |
| 37 | 4.576179 | 6.415348 | -0.9218  |
| 38 | 0.09087  | 0.901719 | -0.92882 |
| 39 | 0.930582 | 9.477119 | -2.88229 |
| 40 | 2.108414 | 8.627682 | -3.89023 |
| 41 | 3.071867 | 10.8256  | -4.64757 |
| 42 | 1.904456 | 11.68927 | -3.62778 |
| 43 | 1.334316 | 10.74034 | -5.01754 |
| 44 | 2.558047 | -1.31032 | 2.040141 |
| 45 | 3.735967 | -2.15957 | 1.032126 |
| 46 | 2.762549 | -4.37188 | 1.77769  |
| 47 | 1.59497  | -3.50842 | 2.797468 |
| 48 | 3.332507 | -3.42282 | 3.167438 |

**Computational data for 10** (SCF total energy = – -801.49470624 hartrees)



номо



LUMO



|      | Coordinates (Angstroms) |          |          |
|------|-------------------------|----------|----------|
| Atom | Х                       | Y        | Z        |
| 1    | 0.360105                | 4.340085 | -0.12981 |
| 2    | 0.360061                | 3.004383 | 0.130268 |
| 3    | 1.591057                | 2.274855 | 0.272459 |
| 4    | 2.827471                | 2.971258 | 0.136638 |
| 5    | 2.827518                | 4.372984 | -0.1365  |
| 6    | 1.591149                | 5.0695   | -0.27216 |
| 7    | 4.044994                | 2.254719 | 0.276678 |
| 8    | 5.316018                | 2.973495 | 0.136271 |
| 9    | 5.316065                | 4.370518 | -0.13646 |
| 10   | 4.045088                | 5.08941  | -0.2767  |
| 11   | 6.552973                | 2.309317 | 0.266157 |
| 12   | 7.754935                | 2.984262 | 0.134163 |
| 13   | 7.75498                 | 4.359527 | -0.13467 |
| 14   | 6.553063                | 5.034582 | -0.26651 |
| 15   | 3.937815                | 6.45785  | -0.54396 |

| 16 | 2.674087 | 7.045562 | -0.65828 |
|----|----------|----------|----------|
| 17 | 1.521173 | 6.392667 | -0.53027 |
| 18 | 1.520992 | 0.951694 | 0.530578 |
| 19 | 2.673864 | 0.298693 | 0.65843  |
| 20 | 3.937631 | 0.886289 | 0.543951 |
| 21 | -0.56076 | 4.904024 | -0.23964 |
| 22 | -0.56084 | 2.440528 | 0.240221 |
| 23 | 6.572254 | 1.24544  | 0.474655 |
| 24 | 8.692873 | 2.446443 | 0.239355 |
| 25 | 8.692954 | 4.89726  | -0.23999 |
| 26 | 6.572414 | 6.098458 | -0.47501 |
| 27 | 4.81356  | 7.084802 | -0.66668 |
| 28 | 4.813334 | 0.259256 | 0.666554 |
| 29 | 2.597262 | 8.111749 | -0.86658 |
| 30 | 2.596968 | -0.76749 | 0.866742 |

**Computational data for 11** (SCF total energy = – 801.4849891 hartrees)





номо

LUMO



|      | Coordinates (Angstroms) |          |          |
|------|-------------------------|----------|----------|
| Atom | Х                       | Y        | Z        |
| 1    | -0.54084                | 5.903049 | -1.88672 |
| 2    | -1.17752                | 4.685184 | -1.7998  |
| 3    | -0.4582                 | 3.524972 | -1.45458 |
| 4    | 0.906223                | 3.566647 | -1.19183 |
| 5    | 1.583091                | 4.823414 | -1.27746 |
| 6    | 0.850078                | 6.001253 | -1.62853 |
| 7    | 1.682894                | 2.369373 | -0.82882 |
| 8    | 3.083865                | 2.49372  | -0.57268 |
| 9    | 3.76073                 | 3.75049  | -0.65829 |
| 10   | 2.984066                | 4.947758 | -1.02134 |
| 11   | 3.816879                | 1.315881 | -0.22161 |
| 12   | 5.20779                 | 1.414091 | 0.036616 |
| 13   | 5.844466                | 2.631962 | -0.05027 |
| 14   | 5.125141                | 3.792173 | -0.3955  |

| 15 | 3.533746 | 6.217544 | -1.13391 |
|----|----------|----------|----------|
| 16 | 2.719447 | 7.311662 | -1.48666 |
| 17 | 1.425565 | 7.234165 | -1.72986 |
| 18 | 1.133223 | 1.099579 | -0.71629 |
| 19 | 1.947524 | 0.00546  | -0.36355 |
| 20 | 3.241398 | 0.082962 | -0.12031 |
| 21 | -1.06854 | 6.813796 | -2.15031 |
| 22 | -2.2431  | 4.609249 | -1.99728 |
| 23 | -0.99635 | 2.584944 | -1.39656 |
| 24 | 5.735493 | 0.503344 | 0.300214 |
| 25 | 6.910032 | 2.707903 | 0.147251 |
| 26 | 5.663286 | 4.732206 | -0.45349 |
| 27 | 4.588213 | 6.396071 | -0.95558 |
| 28 | 0.078763 | 0.921046 | -0.89465 |
| 29 | 1.499438 | -0.98424 | -0.27939 |
| 30 | 3.16754  | 8.30135  | -1.57086 |