Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Scalable production of CuInS2/ZnS quantum dots in a two-step droplet-based microfluidic platform †

Alexandra Yashina,
‡ a Ioannis Lignos, ‡ a Stavros Stavrakis
a, Jaebum Choo b and Andrew J. de
Mello* a

^{*a*} Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1 8093 Zürich, Switzerland; Tel: +41 44 633 66 10;

^b Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea

*e-mail: andrew.demello@chem.ethz.ch

1 Experimental Setup

Figure S1 Image of the two-stage microfluidic platform integrated with two photoluminescence monitoring systems.

2 Effect of reaction time

Figure S2 The effect of the reaction time on emission spectra of CuInS₂ NCs. Other parameters were: R₁ = 0.3, R₂ = 2.5, and T_{core} = 220 °C.

3 Nanocrystal composition

Figure S3 EDX spectra of CIS core (top panel) and CIS/ZnS core/shell NCs (bottom panel). In the top panel only Cu-, In- and S- related peaks were observed, whereas in the case of $CuInS_2/ZnS$ NCs, Zn- related peaks are clearly visible. In addition, ZnS passivation leads to a considerable decrease of the intensities of Cu- and In- related peaks.

4 TEM characterization

Figure S4 TEM images of $CulnS_2/ZnS$ core/shell NCs for (a) Zn/(Cu+In) ratio equal to 5 and (b) equal to 2.5.

5 Effect of *T_{shell}* on the spectral properties

Figure S5 The effect of the temperature of stage 2 (shell passivation) on (a) emission spectra and (b) FWHM of CuInS₂/ZnS NCs. Other parameters were: $R_1 = 0.3$, $R_2 = 2.5$, $R_3 = 3$, reaction time = 32 s and $T_{core} = 210$ °C.