Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

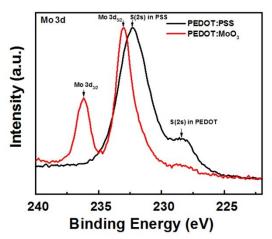
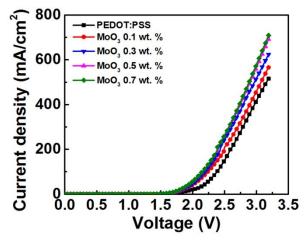



Figure S1. XPS spectra of Mo 3d and S 2s core level for PEDOT:PSS (black line) and PEDOT:MoO₃ composite (red line) films.

Figure S2. Current density vs. voltage characteristics of hole-only devices using different concentration of PEDOT: MoO_3 composite (0-0.7 wt. %).

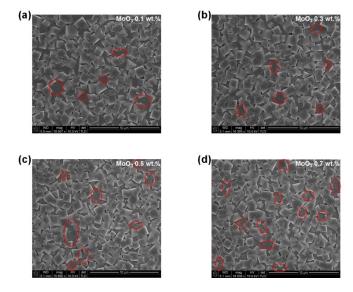


Figure S3. SEM images of the top surface of the CH₃NH₃PbPbBr₃ film on different concentration of PEDOT:MoO₃ compsite

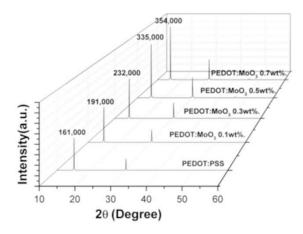


Figure S4. XRD patterns of the $CH_3NH_3PbBr_3$ films prepared on different condition of PEDOT:MoO₃ composite layer (0-0.7 wt.%).

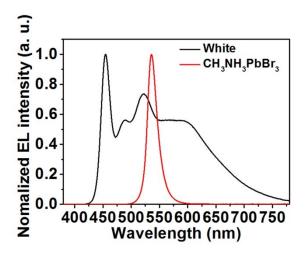


Figure S5. Normalized EL spectra of polymer LED (emissive layer: SPW-111 (white)) (black) and PeLED (emissive layer: CH₃NH₃PbBr₃ (perovskite)).

Experimental Section

Materials

The methyl ammonium bromide (MABr) was synthesized as described by previous reported.²¹ All reagent were used as purchased without further purification.

PEDOT:MoO₃ composite solution

PEDOT:MoO $_3$ composite solution was realized by following process. A water dispersion PEDOT:PSS (AI 4083, Celvios) was filtered by 0.45 μ m hydrophilic filter (PVDF filter) after ammonium molybdate (NH $_4$) $_2$ MoO $_4$ (Sigma Aldrich) powder was added into PEDOT:PSS dispersion varying weight percent ratio from 0. 1 wt.% to 0. 7 wt.% under stirring.

Device fabrication

Each layers without HTL was fabricated according to the previous method.²¹ The PEDOT:PSS and PEDOT:MoO₃ composite solutions were spin-coated onto ITO/glass substrates as a HTL and then annealed at 145 °C for 10 minutes.

Characterisation of PEDOT:MoO₃ composite film and PeLEDs

Characterization of the PeLEDs was performed according to the previous reports.²¹ To observe the morphologies of the CH₃NH₃PbBr₃ films on the PEDOT:MoO₃ and pristine PEDOT:PSS layers, measurements were taken via scanning electron microscopy. The surface morphologies of the and PEDOT:MoO₃ and pristine PEDOT:PSS layers were measured by means of atomic force microscopy (DI-3100, Vecco Co.). The XPS and UPS spectra of the PEDOT:MoO₃ composite layer were assessed using an ESCALAB 250XI device (Thermo Fisher Scientific Co.)