Electronic supplementary information

High-mobility p-type NiO_x thin-film transistors processed at low

temperatures with Al₂O₃ high-k dielectric

Fukai Shan,^{a,b,c*} Ao Liu,^{a,b,c} Huihui Zhu,^c Weijin Kong,^a Jingquan Liu,^c Byoungchul Shin,^d Elvira Fortunato,^e Rodrigo Martins,^e and Guoxia Liu^{a,b,c*}

^aCollege of Physics, Qingdao University, Qingdao 266071, China ^bCollege of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China ^cLab of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China ^dElectronic Ceramics Center, DongEui University, Busan 614-714, Korea ^eDepartment of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New University of Lisbon and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal

^{*} Corresponding author: fukaishan@yahoo.com; gxliu@qdu.edu.cn

Fig. S1. The XPS spectra of N 1s peaks as a function of annealing temperature.

Fig. S2. The variation of RMS roughness and grain size at various annealing temperatures for Cu_xO thin films.

Fig. S3. XRD pattern of the WI AlO_x dielectric thin film. The inset shows the corresponding AFM image.

Fig. S4. Variation of the transfer curves of high mobility NiO_x/Al_2O_3 TFT under NBS test for various time intervals.

	150 °C	200 °C	300 °C	400 °C	500 °C
Cu _x O	38 nm	31 nm	25 nm	22 nm	18 nm
NiO _x	33 nm	28 nm	21 nm	18 nm	15 nm

Table S1. The thickness of Cu_xO and NiO_x thin films as a function of T_a .

Table. S2. Recent advances in the development of solution-processed p-type oxide TFTs.

Method ^{a)}	Channel	Process temp. (°C)	$\mu_{h,FE}$ (cm ² /Vs)	I_{on}/I_{off}	V _g range (V)	Year	Ref.	
SC	SnO	450	0.13	85	-70~30	2012	[1]	
SC	Cu ₂ O	700	0.16	~10 ²	-40~40	2013	[2]	
SP	Cu ₂ O	275	10-4-10-2	4×10 ³	-140~20	2013	[3]	
IJ	Cu _x O	400	0.22	~10 ³	-2~1	2015	[4]	
SC	Cu ₂ O	600	0.29	$\sim \! 10^4$	-30~10	2015	[5]	
SC	CuO	300	0.8	~10 ⁵	-3~2	2015	[6]	
SC	Cu _x O	500	10-2	$\sim \! 10^4$	-30~30	2016	[7]	
SC	Sn-NiO	280	0.97	~10 ⁶	-7~1	2016	[8]	
SC	NiO	300	4.4	~10 ⁵	-2~0	2016	[9]	
SC	NiO	300	14.7	10 ⁴ ~10 ⁵	-3.5~2	This	This work	

^{a)} (SC: spin-coating, SP: spray pyrolysis, IJ: ink-jet).

References:

1) Okamura, K.; Nasr, B.; Brand, R. A.; Hahn, H., Solution-processed oxide semiconductor SnO in p-channel thin-film transistors. *J. Mater. Chem.* 2012, 22, 4607.

2) Kim, S. Y.; Ahn, C. H.; Lee, J. H.; Kwon, Y. H.; Hwang, S.; Lee, J. Y.; Cho, H. K., p-channel oxide thin film transistors using solution-processed copper oxide. *ACS Appl. Mater. Interfaces* 2013, 5, 2417.

3) Pattanasattayavong, P.; Thomas, S.; Adamopoulos, G.; McLachlan, M. A.; Anthopoulos, T. D., p-channel thin-film transistors based on spray-coated Cu₂O films. *Appl. Phys. Lett.* 2013, 102, 163505.

4) Garlapati, S. K.; Baby, T. T.; Dehm, S.; Hammad, M.; Chakravadhanula, V. S. K.; Kruk, R.; Hahn, H.; Dasgupta, S., Ink-jet printed CMOS electronics from oxide semiconductors. *Small* 2015, 11, 3591.

5) Yu, J.; Liu, G.; Liu, A.; Meng, Y.; Shin, B.; Shan, F., Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique. *J. Mater. Chem. C* 2015, 3, 9509.

6) Liu, A.; Liu, G.; Zhu, H.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F., Waterinduced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. *Adv. Funct. Mater.* 2015, 25, 7180. 7) Jang, J.; Chung, S.; Kang, H.; Subramanian, V., P-type CuO and Cu₂O transistors derived from a sol-gel copper (II) acetate monohydrate precursor. *Thin Solid Films* 2016, 600, 157.

8) Lin, T.; Li, X.; Jang, J., High performance p-type NiO_x thin-film transistor by Sn doping. *Appl. Phys. Lett.* 2016, 108, 233503.

9) Liu, A.; Liu, G.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F., Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. *Appl. Phys. Lett.* 2016, 108, 233506.