Rapid dielectric bistable switching materials without

time/temperature responsive blind area in the linarite-like type

molecular large-size single crystals

Cheng Chen, Wan-Ying Zhang, Heng-Yun Ye, Qiong Ye*, Da-Wei Fu*

Bond lengths / Å an	d bond angles	s / °		
Cd(1)-O(1)	2.234(3)	Cd(1)-0	0(1)#1	2.234(3)
Cd(1)-O(1)#2	2.234(3)	Cd(1)-0	0(1)#3	2.234(3)
Cd(1)-Cl(1)#4	2.6260(6)	Cd(1)-0	Cl(1)#1	2.6260(6)
Cd(1)-Cl(1)#5	2.6260(6)	Cd(1)-0	Cl(1)	2.6260(6)
Cl(1)-Cd(1)#7	2.6260(6)	S(1)-O(1)#4	1.492(4)
S(1)-O(2)	1.401(2)	S(1)-O	(2)#4	1.401(2)
S(1)-O(1)#3	1.492(4)	S(1)-O	(1)	1.492(4)
S(1)-O(1)#6	1.492(4)			
O(1)-Cd(1)-O(1)#1	180.00(18)	O(1)-C	d(1)-O(1)#2	165.20(19)
O(1)#1-Cd(1)-O(1)#2	14.80(19)	O(1)-Co	d(1)-O(1)#3	14.80(19)
O(1)#1-Cd(1)-O(1)#3	165.20(19)	O(1)#2-	-Cd(1)-O(1)#3	180.0
Hydrogen bonds / Å	and °			
D-H···A	d(D-H)	d(H····A)	d(D····A)	<(DHA)
N(1)-H(1C)O(2)#8	0.89	1.82	2.637(3)	151.7

Table S1Selected structural data for 1under 293K

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 x,-y+1,-z #3 -x+1,y,z #4 -x+1,y,-z+1/2 #5 x,-y+1,z-1/2 #6 x,y,-z+1/2 #7 -x+1,-y+1,z+1/2 #8 x-1/2,y-1/2,z

Bond lengths / Å a	nd bond angle	es / °		
Cd(1)-O(2)	2.269(3)	Cd(1)-O(2)#1		2.269(3)
Cd(1)-Cl(1)	2.6287(15)	Cd(1))-Cl(1)#1	2.6287(15)
Cd(1)-Cl(2)	2.6348(14)	Cd(1)-Cl(2)#1		2.6348(14)
Cl(2)-Cd(1)#2	2.6348(14)	Cl(1)-Cd(1)#2		2.6287(15)
S(1)-O(3)	1.450(3)	S(1)-O(2)#3		1.470(2)
S(1)-O(2)	1.470(2)	S(1)-O(1)		1.488(3)
O(7)#2-Cl(1)-O(7)	109.72(11)	O(7)	#2-Cl(1)-O(10)	108.94(7)
O(7)-Cl(1)-O(10)	108.94(7)	O(7)#2-Cl(1)-O(9)		109.86(4)
Hydrogen bonds /	Å and $^{\circ}$			
D-H···A	d(D-H)	d(H····A)	d(D····A)	<(DHA)
N(1)-H(1C)O(3)#4	0.90	1.84	2.609(5)	142.7
N(2)-H(2C)O(1)#5	0.90	1.78	2.648(5)	159.9

Table S2Selected structural data for 1 under 193k

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y, -z#2 - x + 1, y + 1/2, -z #3 x, -y + 1/2, z #4 x + 1/2, y, -z + 1/2 #5 x + 1/2, y, -z - 1/2

Cd(1)-O(1)	2.260(4)	Cd(1)	-O(1)#1	2.260(4)
Cd(1)-O(1)#2	2.260(4)	Cd(1)	-O(1)#3	2.260(4)
Cd(1)-Br(1)#4	2.7667(11)	Cd(1)-Br(1)#1	2.7667(11)
Cd(1)-Br(1)#5	2.7667(11)	Cd(1)-Br(1)	2.7667(11)
Br(1)-Cd(1)#7	2.7667(11)	S(1)-	O(2)#4	1.448(3)
S(1)-O(2)	1.448(3)	S(1)-	-O(1)#2	1.457(4)
S(1)-O(1)#6	1.457(4)	S(1)-	-O(1)#4	1.457(4)
S(1)-O(1)	1.457(4)			
O(1)-Cd(1)-O(1)#1	180.0	O(1)-	Cd(1)-O(1)#2	6.2(5)
O(1)#1-Cd(1)-O(1)#2	173.8(5)	O(1)-	O(1)-Cd(1)-O(1)#3	
O(1)#1-Cd(1)-O(1)#3	6.2(5)	O(1)#2-Cd(1)-O(1)#3		180.00(19
Hydrogen bonds /	Å and $^{\circ}$			
D-H····A	d(D-H)	d(H····A)	d(DA)	<(DHA)
N(1)-H(1C)O(2)#8	0.89	1.82	2.637(3)	151.7

Table S3Selected structural data for 2 under 293K

Bond lengths / Å a	nd bond angle	es / °		
Cd(1)-O(1)	2.257(11)	Cd(1)-O(1)#1	2.257(11)
Cd(1)-Br(1)#2	2.7554(17)	Cd(1))-Br(1)#3	2.7554(17)
Cd(1)-Br(1)#1	2.7554(17)	Cd(1))-Br(1)	2.7554(17)
Br(1)-Cd(1)#4	2.6348(14)			
S(1)-O(2)	1.439(12)	S (1))-O(2)#2	1.439(12)
S(1)-O(1)	1.460(12)	S(1))-O(1)#5	1.460(12)
O(7)#1-Cl(1)-O(1)	180.0			
Hydrogen bonds /	Å and °			
D-H···A	d(D-H)	d(H····A)	d(DA)	<(DHA)
N(1)-H(1C)O(2)#8	0.99	1.71	2.64(2)	154.6

Table S4Selected structural data for 2 under 223k

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1 #2 -x,y,z #3 x,-y+1,-z+1 #4 -x,-y+1,z-1/2 #5 x,y,-z+3/2 #6 x,y,-z+1/2 #7 -x+1,y,z #8 -x+1,-y+1,-z+1

Fig.S2 The IR spectrum for compound 2

Fig.S3 The powder X-ray diffraction (PXRD) pattern for compound 1

Fig.S4 The powder X-ray diffraction (PXRD) pattern for compound 2

Fig.S5 Raman spectra of compound 1 at various temperatures in the 250-3500 cm⁻¹ spectral ranges.

Fig.S6 Raman spectra of compound 2 at various temperatures in the 250-3500 cm⁻¹ spectral ranges.