Supporting Information for

Centimeter-scale growth of high-quality In₂Se₃ film for transparent, flexible and

high performance photodetectors

Z. Q. Zheng, J. D. Yao and G. W. Yang

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, Sun Yat-sen University,

Guangzhou 510275, Guangdong, P. R. China.

Device	Fabrication	Measurement	Responsivity		Spectral	D*	Physical	Ref.
(substrate)	method	condition	(A/W)	(%)	window	(Jones)	characteristic	
(Bandgap in eV)								
$1L MoS_2$	Mechanical	520 nm						
(on SiO ₂ /Si)	exfoliation	$V_{ds} = 5 V$	1.17	280	Visible-	$1.5 * 10^7$	Rigid	1
(1.8, DB)					NIR			
$1 L MoS_2$	Mechanical	$V_g = 50 V$						
(on SiO ₂ /Si)	exfoliation	$V_{ds} = 1 V$	7.5*10 ⁻³	-	Visible	-	Rigid	2
(1.8, DB)								
ML MoS ₂	Mechanical	633 nm						
(on SiO ₂ /Si)	exfoliation	$V_g = 3 V$	0.12	-	Visible-	5*10 ⁷	Rigid	3
(1.2, IB)		$V_{ds} = 1 V$			NIR	10 ¹¹		
Graphene	Mechanical	1550 nm						
(on SiO ₂ /Si)	exfoliation	$V_g = 80 V$	5*10-4	6-16	UV-IR	-	Rigid	4
(gapless)								
FL GaSe	Mechanical	254 nm						
(on SiO ₂ /Si)	exfoliation	$V_{ds} = 5 V$	2.8	1367	UV	-	Rigid	5
(2.1, IB)								
MLWS ₂		635 nm						
(on SiO ₂ /Si)	PLD	$V_{ds} = 9 V$	0.51	137	UV-NIR	$2.7*10^{9}$	Rigid	6
(1.1, IB)								
1L MoSe ₂		532 nm						
(on SiO ₂ /Si)	CVD	$V_{ds} = 10 V$	13*10 ⁻³	-	Visible	-	Rigid	7
(1.56, DB)								
1L WSe ₂		532 nm						
(on SiO ₂ /Si)	CVD	$V_{ds} = 5 V$	3.717	860	UV-	-	Rigid	8
(1.62, DB)					Visible			
FL GaS		254 nm						
(on SiO ₂ /Si)	CVD	$V_{ds} = 2 V$	4.2	2050	UV-	10^{10}	Rigid	9
(3.05, IB)					Visible	10^{14}		
FL InSe		450 nm						
(on SiO ₂ /Si)	CVD	$V_{ds} = 10 V$	12.3	3389	Visible-	$1.07*10^{11}$	Rigid	10
(1.3, DB)					NIR			
MoS ₂ /h-BN	Mechanical	500 nm						
(on SiO ₂ /Si)	exfoliation	$V_{ds} = 1.5 V$	5.07	1200	Visible	3*10 ¹⁰	rigid	11
ML In ₂ Se ₃	Mechanical	300 nm			UV-			
(on SiO ₂ /Si)	exfoliation	$V_{ds} = 5 V$	395	163000	Visible	2.26*10 ¹²	Rigid	12
(1.3, DB)								

Table S1. Summary of performance parameters of recently developed 2Dmaterial-based photodetectors

FL In ₂ Se ₃								
(on SiO ₂ /Si)	epitaxy	Visible light	2.5	-	Visible	-	Rigid	13
(1.26, DB)		$V_{ds} = 0.1 V$						
ML In ₂ Se ₃	epitaxy	Visible light	7.2	-	Visible	-	Rigid	14
(on SiO ₂ /Si)		$V_{ds} = 5 V$						
FL Pb _{1-x} Sn _x Se								
(on mica)	CVD	473 nm	5.95	-	UV-NIR	-	Flexible	15
(0.43, -)		$V_{ds} = 2 V$						
FL InSe		633 nm						
(on PET)	CVD	$V_{ds} = 10 V$	3.9	764	Visible-	$5.47*10^{10}$	Flexible	10
(1.3, DB)					NIR			
FL GaS		254 nm						
(on PET)	CVD	$V_{ds} = 2 V$	19.2	9371	UV	-	Flexible	9
(3.05, IB)								
FL GaTe		473 nm						
(on PET)	CVD	$V_{ds} = 5 V$	0.03	8	UV-	-	Flexible	16
(1.7, DB)					Visible			
GaSe crystals		white light						
(on mica)	Epitaxy	$V_{ds} = 10 V$	0.03	-	Visible	-	Flexible,	17
(2.1, IB)							Transparent	
ML In ₂ Se ₃		532nm						
(on special PI)	PLD	$V_{ds} = 5 V$	20.5	4784	UV-NIR	6.02 *10 ¹¹	Flexible,	ours
(1.154, DB)							Transparent	
ML In ₂ Se ₃		532nm						
(normal PI)	PLD	$V_{ds} = 5 V$	45.2	10558	UV-NIR	1.6*10 ¹²	Flexible	ours
(1.154, DB)								
ML In ₂ Se ₃		532nm						
(on sapphire)	PLD	$V_{ds} = 5 V$	27.9	6525	UV-NIR	4.88 *10 ¹¹	Transparent	ours
(1154, DB)								
ML In ₂ Se ₃		532nm						
(on SiO ₂ /Si)	PLD	$V_{ds} = 5 V$	22.96	5366	UV-NIR	5.13*10 ¹¹	Rigid	ours
(1.154, DB)								

DB and IB represent the direct and indirect band gaps, respectively. 1L, FL and ML mean monolayer, few-layer and multilayer, respectively.

Figure S1. Size distribution histogram of the as-prepared In_2Se_3 film and corresponding Gaussian fitting curve of the grain size, which eveals that the average diameter of grain size of the as-prepared In_2Se_3 film is 34.01 nm. SD represents standard deviation.

Figure S2. (a) Optical image of the In_2Se_3 sample deposited on PI substrate, in which many scratches were made with a plastic sheet for AFM measurements. (b) AFM image at the edge of a scratch in (a). The corresponding height profiles along the red dotted line and blue dotted line are demonstrated in (c) and (d), respectively. The thickness of the In_2Se_3 sample is deduced to be ~22.9 nm.

Figure S4. (a) UV-Vis-NIR diffuses reflectance absorption spectrum of the In_2Se_3 film and (b) the corresponding Tauc plot, which presents a direct bandgap of 1.154 eV for the as-prepared In_2Se_3 film.

Figure S5. Voltage dependence photoresponse at different bias voltages Vds. (a) Photocurrent under 532 nm light illumination with power density of 20 mW/cm² as a function of bias voltage, showing a linear dependence on the bias voltage. (b) Time dependence switching behavior at different bias voltages V_{ds} from 0.2 to 5 V. Power density: 532 nm and 20 mW/cm2. (c) The working principle of bias voltage dependence photoresponse.

Figure S6. Transmittance and responsibility evolved with the thickness of the In_2Se_3 active layer.

Figure S7. Photoswitching curves of the device before and after exposing to ambient environment for a month.

Figure S8. Greater details depict the transient current characteristic for this device: (a) rise, (b) decay. Here, the time interval between each point is 8.2 ms, and the rise/fall time was defined as the current increased/decreased from 0/100% to 80/20% of the stable current.

Figure S9. I-V curves of four contacts (left) indicating the successful contact of four electrodes on the In₂Se₃ film. Final Hall results of the multilayer In₂Se₃ film measured at room temperature (right) revealing an n-type behavior with mobility (μ) of 76.8 cm²/Vs.

Figure S10. (a) I-V curves under ambient and vacuum conditions. Light power density: 20 mW/cm². (b) Temporal photoresponse of the In_2Se_3 device at $V_{ds} = 0.2$ V.

Figure S11. The In₂Se₃ film deposited on the conventional SiO₂/Si substrate and its corresponding optoelectronic properties. (a) The optical images of the deposited In₂Se₃ film (green part). (b) I-V characteristics of the In₂Se₃ photodetector in the presence and absence of light ($\lambda = 532$ nm, power density = 20 mW/cm²). (c) Time-dependent switching behavior of the photodetector under 0.2 V bias voltage. (d) Illumination intensity dependent photocurrent (black squares) and responsivity (blue squares) at V_{ds} = 5 V. The power laws of I_{ph} ~ P^{0.453} was calculated from fitting the measured photocurrents.

Figure S12. The In₂Se₃ film deposited on the commercial PI substrate and its corresponding optoelectronic properties. (a) The optical images of the deposited In₂Se₃ film (white part). The inset is in a flexed state. (b) I-V characteristics of the In₂Se₃ photodetector in the presence and absence of light ($\lambda = 532$ nm, power density = 20 mW/cm²). (c) Time-dependent switching behavior of the photodetector under 0.2 V bias voltage. (d) Illumination intensity dependent photocurrent (black squares) and responsivity (blue squares) at V_{ds} = 5 V. The power laws of I_{ph} ~ P^{0.471} was calculated from fitting the measured photocurrents.

Figure S13. The In₂Se₃ film deposited on transparent sapphire substrate and its corresponding optoelectronic properties. (a) The optical images of the deposited In₂Se₃ film. Its transparency is revealed by the visibility of the flower placed beneath the transparent devices. (b) I-V characteristics of the In₂Se₃ photodetector in the presence and absence of light ($\lambda = 532$ nm, power density = 20 mW/cm²). (c) Time-dependent switching behavior of the photodetector under 0.2 V bias voltage. (d) Illumination intensity dependent photocurrent (black squares) and responsivity (blue squares) at V_{ds} = 5 V. The power laws of I_{ph} ~ P^{0.453} was calculated from fitting the measured photocurrents.

References

- 1. S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang and S. Lee, *ACS Nano*, 2014, **8**, 8285-8291.
- 2. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, *ACS Nano*, 2011, **6**, 74-80.
- 3. W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo and S. Kim, *Adv. Mater.*, 2012, **24**, 5832-5836.
- 4. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia and P. Avouris, *Nat. Nanotechnol.*, 2009, **4**, 839-843.
- 5. P. Hu, Z. Wen, L. Wang, P. Tan and K. Xiao, ACS Nano, 2012, 6, 5988-5994.
- 6. J. D. Yao, Z. Q. Zheng, J. M. Shao and G. W. Yang, *Nanoscale*, 2015, 7, 14974-14981.
- J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang, B. Huang, D.-D. Zhu, J.-J. Li, C.-Z. Gu and X.-M. Meng, *Nanoscale*, 2014, 6, 8949-8955.
- 8. J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto and C. H. Sow, *Nano Lett.*, 2015, **15**, 3524-3532.
- P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan and K. Xiao, *Nano Lett.*, 2013, 13, 1649-1654.
- S. R. Tamalampudi, Y. Y. Lu, U. R. Kumar, R. Sankar, C. D. Liao, B. K. Moorthy, C. H. Cheng, F. C. Chou and Y. T. Chen, *Nano Lett.*, 2014, 14, 2800-2806.
- M. S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi and W. J. Yoo, ACS Nano, 2014, 8, 9332-9340.
- R. B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moore, 2nd and B. Yu, ACS Nano, 2014, 8, 514-521.
- M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng and Z. Liu, J. Am. Chem. Soc., 2013, 135, 13274-13277.
- Q. L. Li, C. H. Liu, Y. T. Nie, W. H. Chen, X. Gao, X. H. Sun and S. D. Wang, Nanoscale, 2014, 6, 14538-14542.
- Q. Wang, K. Xu, Z. Wang, F. Wang, Y. Huang, M. Safdar, X. Zhan, F. Wang, Z. Cheng and J. He, *Nano Lett.*, 2015, 15, 1183-1189.
- 16. Z. Wang, M. Safdar, M. Mirza, K. Xu, Q. Wang, Y. Huang, F. Wang, X. Zhan and J. He, *Nanoscale*, 2015, **7**, 7252-7258.
- Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu and H. Peng, ACS Nano, 2014, 8, 1485-1490.