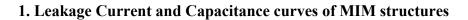
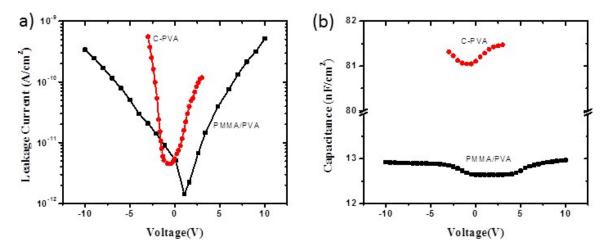
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information


Low voltage, low cost, flexible and balanced ambipolar OFETs based on Br₂PTCDI-C18/CuPc fabricated on Al foil gate substrates with good ambient stability


Suresh Vasimalla,^a Nimmakayala V. V. Subbarao^b and Parameswar Krishnan Iyer*^{a,b}

*Email: pki@iitg.ernet.in

Table of contents

1. Leakage Current and Capacitance curves of MIM structures	S2
2. Summary of electrical parameters of the PMMA/PVA dielectric based OFET	
in vacuum conditions	S2
3. Dual sweep transfer characteristics of the OFET using PMMA/PVA dielectric	S 3
4. Long term stability of the PMMA/PVA dielectric based OFET	
in vacuum conditions	S 3
5. Summary of electrical parameters of the PMMA/PVA dielectric based OFET	
in humidity conditions	S4
6. Summary of electrical parameters of the C-PVA dielectric based OFET	
in vacuum conditions	S4
7. Stability of C-PVA dielectric based Ambipolar organic field effect transistor	
in vacuum condition	S4

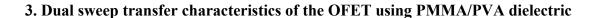




Figure S1. (a) I-V characteristics of bilayer polymer (PMMA/PVA) dielectrics and cross-linked PVA (C-PVA) dielectric materials. (b) Capacitance of polymer dielectrics films. Measurements were carried out at 100 kHz.

2. Table S1. Summary of the electrical parameters of the PMMA/PVA dielectric based organic field effect transistor measured under vacuum conditions.

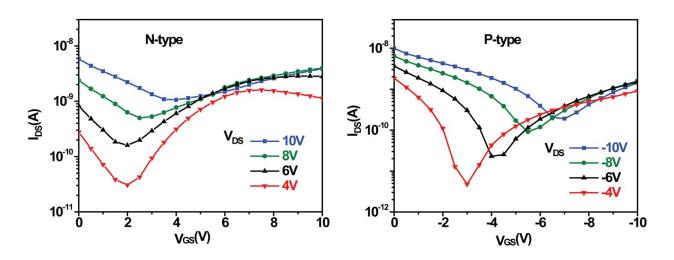
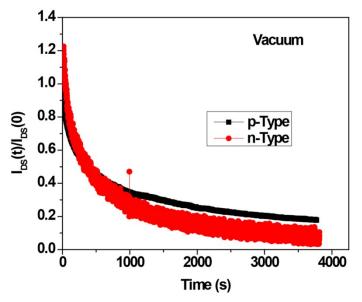

Device	V _{DS}	μ (cm ² /Vs)	V _{Th} (V)	S(V/dec)	$I_{on/off} \times 10$
n-type	10	8.8×10 ⁻⁵	-7.25	8.52	1
	8	2.6×10 ⁻³	-2.01	5.02	1
	6	1.2×10-2	1.11	3.14	2
	4	2.5×10-3	0.66	1.01	2
p-type	-10	2.7×10-3	-4.98	6.75	~1
	-8	3.4×10-3	-3.64	3.13	~1
	-6	5.5×10-3	-2.52	2.25	1.5
	-4	7.3×10 ⁻³	0.85	1.21	1.5

Figure S2. Dual sweep transfer characteristics of the ambipolar device fabricated using PMMA/PVA as the dielectric material (a) n-type (b) p-type measured under vacuum conditions.

4. Long term stability of the PMMA/PVA dielectric based OFET in vacuum conditions

Figure S3. Transfer characteristics of the ambipolar device fabricated using PMMA/PVA as the dielectric material (c) n-type (d) p-type measured after 8 months under vacuum conditions.


5. Table S2. Summary of the electrical parameters of the PMMA/PVA dielectric based organic field effect transistor measured under humidity conditions.

Device	V _{DS}	μ (cm ² /Vs)	V _{Th} (V)	S(V/dec)	$I_{on/off} \times 10^3$
n-type	10	5.4×10-4	-1	0.63	1.63
p-type	-10	2.1×10 ⁻³	0.6	1.85	0.21

6. Table S3. Summary of the electrical parameters of the C-PVA dielectric based organic field effect transistor measured under vacuum conditions.

Device	V _{DS}	μ (cm ² /Vs)	V _{Th} (V)	S(V/dec)	$I_{on/off} \times 10$
n-type	3	2.3×10-4	0.35	1.60	1
	2	2.0×10 ⁻⁴	0.75	0.81	2
p-type	-3	3.0×10 ⁻⁴	-0.81	1.60	~1
	-2	3.4×10 ⁻⁴	-1.62	0.82	1.5

7. Stability of C-PVA dielectric based Ambipolar organic field effect transistor in vacuum conditions

Figure S4. Time-dependent I_{DS} decay under a constant bias stress under vacuum conditions for the ambipolar organic field-effect transistors fabricated using C-PVA as the dielectric material. Both n-type and p-type transports measured for 1h.