Electronic Supplementary Information For:

Efficient and stable organic solar cells via sequential process

Pei Cheng,^{ad} Cenqi Yan,^b Yang Wu,^c Shuixing Dai,^b Wei Ma*^c and Xiaowei Zhan*^b

^a. Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Organic

Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bDepartment of Materials Science and Engineering, College of Engineering, Key Laboratory

of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing

100871, China. E-mail: xwzhan@pku.edu.cn

^cState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China. E-mail: msewma@mail.xjtu.edu.cn

^dUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Donor	Acceptor	Active layer	DCB	V _{OC}	$J_{ m SC}$	Calc J _{SC}	FF	PCE	E (%)
(nm)	(nm)	(nm)	(%)	(V)	(mA cm ⁻²)	(mA cm ⁻²)	(%)	ave	best
50	35	76	5	0.81	14.2	13.9	61.9	7.1	7.3
65	35	90	5	0.81	15.3	14.9	60.4	7.5	7.8
80	35	103	5	0.80	15.3	15.0	55.8	6.9	7.1
65	50	105	5	0.82	14.9	14.6	64.1	7.8	8.0
80	/a	/a	0	0.75	3.91	3.75	35.6	1.1	1.1
80	50	123	3	0.82	16.6	16.3	61.8	8.4	8.6
80	50	120	5	0.81	16.6	16.4	62.7	8.5	8.6
80	50	117	7	0.81	16.7	16.5	62.4	8.4	8.6
95	50	134	5	0.81	16.1	15.4	60.5	7.8	8.1

 Table s1 Average and best device data based on s-BHJ films with different thicknesses and different DCB

 content in mixed solvent

 $^{\rm a}$ PC_{71}BM can't form a uniform film with pure DCM.

	DIO			Polymer weight content (%)	
Structure	(%)	Depth (nm)	Atom ratio of O/F		
m-BHJ	0	0	3.037	62	
m-BHJ	0	24	4.769	38	
m-BHJ	0	48	6.022	30	
m-BHJ	0	72	4.506	40	
m-BHJ	0	96	3.393	55	
m-BHJ	0	120	4.135	44	
m-BHJ	3	0	4.001	46	
m-BHJ	3	24	5.488	33	
m-BHJ	3	48	4.008	46	
m-BHJ	3	72	3.743	49	
m-BHJ	3	96	2.907	65	
m-BHJ	3	120	3.355	56	
s-BHJ	0	0	20.61	8.4	
s-BHJ	0	24	4.171	44	
s-BHJ	0	48	3.323	56	
s-BHJ	0	72	2.770	69	
s-BHJ	0	96	2.513	74	
s-BHJ	0	120	2.378	82	

Table s2 Compositions of m-BHJ and s-BHJ films in different depth

Daviaa	DIO	Thickness	Dra annaaling	Stability	$(2m^2 V^{-1} s^{-1})$	$\mu_{\rm e} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	
Device	(%)	(nm)	Fie-annearing	test	$\mu_{\rm h}$ (cm v s)		
m-BHJ-0	0	97	No	No	1.9×10^{-4}	2.6×10^{-4}	
m-BHJ-1	3	100	No	No	3.2×10^{-4}	$2.8 imes 10^{-4}$	
m-BHJ-2	3	101	No	Yes	4.1 × 10 ⁻⁵	3.2×10^{-4}	
m-BHJ-3	3	102	Yes	No	1.2×10^{-4}	3.0×10^{-4}	
m-BHJ-4	3	102	Yes	Yes	5.3 × 10 ⁻⁵	3.2 × 10 ⁻⁴	
s-BHJ-1	0	120	No	No	8.1 × 10 ⁻⁴	2.8×10^{-4}	
s-BHJ-2	0	122	No	Yes	1.4×10^{-4}	2.9×10^{-4}	
s-BHJ-3	0	118	Yes	No	$7.9 imes 10^{-4}$	2.7×10^{-4}	
s-BHJ-4	0	121	Yes	Yes	8.1 × 10 ⁻⁴	2.9×10^{-4}	

Table s3 Hole and electron mobilities of m-BHJ and s-BHJ films

Fig. s1 Chemical structures of PTB7-TH and PC₇₁BM.

Fig. s2 Stability curve of the m-BHJ-0 device under continuous heating at 130 °C for 120 min.

Fig. s3 Stability curves of s-BHJ devices with different pre-annealing temperatures.

Fig. s4 *J-V* characteristics under dark for a) hole-only and b) electron-only devices based on m-BHJ and s-BHJ films.

Calculation of the surface compositions

PTB7 - TH weight content =
$$\frac{Polymer weight}{Polymer weight + PCBM weight}$$
$$= \frac{n_{polymer}M_{polymer}}{n_{polymer}M_{polymer}}$$
$$= \frac{1}{n_{polymer}M_{polymer}}$$
$$\frac{2n_{polymer} + 2n_{PCBM}}{n_{polymer}} = \frac{O}{F}$$
$$\frac{n_{PCBM}}{n_{polymer}} = 0.5\left(\frac{O}{F} - 2\right) = 0.5\frac{O}{F} - 1$$
PTB7 - TH weight content =
$$\frac{1}{\left(\frac{M_{PCBM}}{M_{polymer}}\right)\left(0.5\frac{O}{F} - 1\right) + 1}$$

 M_{PCBM} is the molecular weight of PC₇₁BM (1016);

 $M_{Polymer}$ is the molecular weight of repeat unit of PTB7-TH (905);

 n_{PCBM} is the mole number of PC₇₁BM;

 $n_{Polymer}$ is the mole number of repeat unit of PTB7-TH;

 $\frac{O}{F}$ is the atom ratio of O/F.