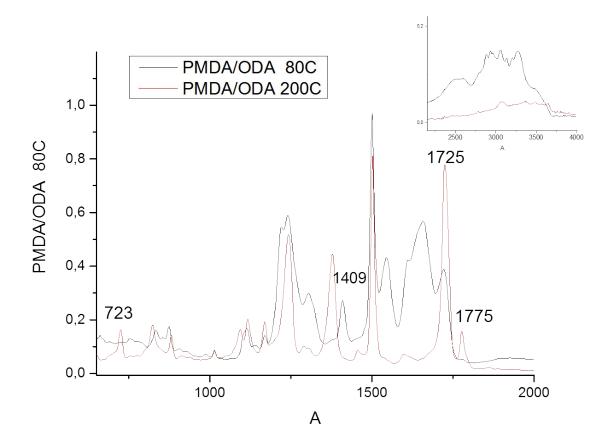
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

An Efficient Polyimide Ammonia Sensor

Evie L. Papadopoulou^a, Davide Morselli^a, Mirko Prato^b, Alessandro Barcellona^c, Athanassia Athanassiou^a

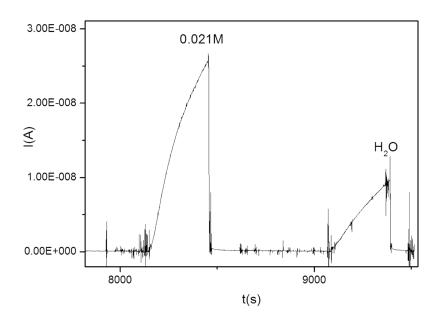
and Ilker S. Bayer^a


^a Istituto Italiano di Tecnologia, Smart Materials Group, via Morego 30, 16163 Genoa (Italy).

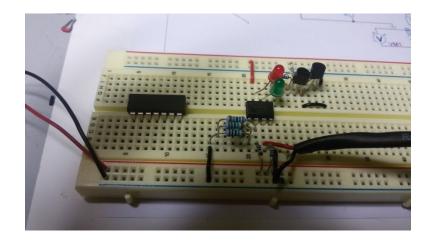
^b Istituto Italiano di Tecnologia, Nanochemistry Group, via Morego 30, 16163 Genoa (Italy).

^c Istituto Italiano di Tecnologia, Nanophysics Department, Via Morego 30, 16163 Genoa (Italy).

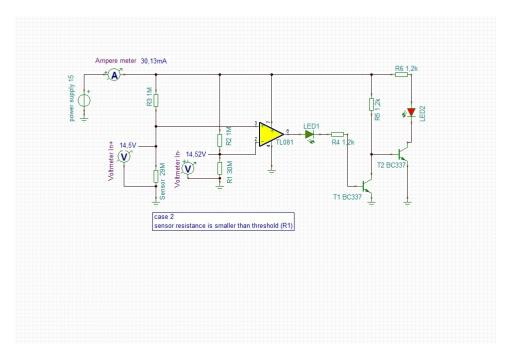
Supporting Information


S1: PMDA-ODA curing

S1: FTIR spectra of the uncured (blue) and cured (red) PMDA-ODA films.


The PMDA-ODA curing involves the condensation of the amide group and hydroxyl group (carried out at 200°C) following the mechanism proposed by Jwo-Huei Jou et al.¹. As expected, the cured sample shows the typical peak due to $(CO)_2NC$ imide symmetrical stretching centred at 1775 cm⁻¹, meaningful of an efficient curing procedure. This was further confirmed by the band at 3000 cm⁻¹, due to H-bond typical of NH₂ and OH, that disappears after curing. In addition, the absorption peaks at 1550 cm⁻¹ (amide I, CNH vibration) and 1409 cm⁻¹ disappear, whereas two new peaks appear at 1380 cm⁻¹ (imide II, C-N stretching vibration) and 725 cm⁻¹ (imide IV, vibration of cyclic C=O)².

S2: Water response vs analyte

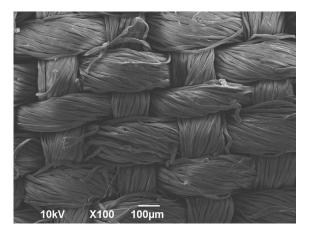


The sensor response for 0.021 M ammonia solution and water. The increase of the electrical current in the presence of water, is much smaller than in the present of ammonia.

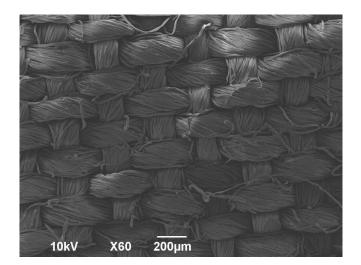
S3: Device

S3a: The electrical circuit.

S3b: Schematic diagram of the circuit presented in S2a.


The electronic device to detect ammonia gas has as its core an operational amplifier in comparator configuration and a second stage with a transistor to drive any connected alarm device.

The operational amplifier compares two voltages in input port, V⁺ and V⁻, and computes their difference. The sensor voltage drop is V⁺, a value that changes with the variation of resistivity when ammonia gas is present. V⁻ is the voltage drop of the threshold resistor (66M Ω), fixed as a limit for the activation of the alarm. The sensor is biased with +12 V. When V⁺-V⁻>0, a voltage close to the one of the positive supply pole (+12V) will be the output. When V⁺-V⁻<0, a voltage close to the negative supply pole (0V) will be the output.


The output is connected to a green LED that indicates when ammonia vapor is not present. Finally, the output goes to a logic port, not with bjt technology, that can drive, when $V^+-V^-<0$, a red LED or any other alarm device.

S4: PMDA-ODA on cotton textile

PMDA-ODA was dropped-casted on cotton textile and cured as described in Section 2.1. The polymer convoluted the fibers of the textile, rendering them a little darker than the untreated ones.

S4a: SEM image of the untreated textile, after the curing procedure.

S4b: SEM image of the cotton covered with PMDA-ODA, after curing.

S5: LOD calculation

The LOD was calculated using Henry's law constant as described in Ref. 3.

It is theoretically known that:

$$k_H^{cc} = \frac{c_a}{c_g} \tag{1}$$

where the Henry's solubility, k_{H}^{cc} , describing the solubility of a gas in an aqueous solution, is expressed as the dimensionless ratio between the aqueous-phase concentration, c_a , of a species and its gas-phase concentration c_g .

Furthermore,

$$k_H^{cc} = k_H \times RT \tag{2}$$

Where , ${}^{k}{}_{H}$, is Henry's constant and equals 60 mol/m³Pa, R is the ideal gas constant (0.082 L atm/K mol) and T is the absolute temperature.

From (1) and (2) one can calculate c_g , when c_a is known (in the present case c_a =59.5 ppm).

1. Jou, J. H.; Huang, P. T., Effect of thermal curing on the structures and properties of aromatic polyimide films. *Macromolecules* **1991**, *24* (13), 3796-3803.

2. Nishino, T.; Kotera, M.; Inayoshi, N.; Miki, N.; Nakamae, K., Residual stress and microstructures of aromatic polyimide with different imidization processes. *Polymer* **2000**, *41* (18), 6913-6918.

3. R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys., 15, 4399-4981, 2015.