Perfect Kagomé lattice in YCu₃(OH)₆Cl₃:

A new candidate for the quantum spin liquid state

Wei Sun,^{1,2} Ya-Xi Huang,¹ Sergiy Nokhrin,³ Yuanming Pan,^{2,*} and Jin-Xiao Mi¹

¹Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China

²Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada, Email: yuanming.pan@usask.ca

³Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada

Figure S1. SEM images and EDS spectra of the powder sample (a, c) and single crystal (b, d) of $YCu_3(OH)_6Cl_3$, demonstrating the growth rates of the {10-10} and {0001} faces associated with the Cu–O–Cu chains (e) and the Y–Cl–Y chains (f), respectively.

Figure S2. Temperature dependent magnetic AC-susceptibility, $\chi(T) = \chi'(T) + i\chi''(T)$, obtained at different frequencies in a zero DC field (a, b) and 3000 Oe AC field (c, d).