Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

## Excitonic quantum confinement modified optical conductivity of monolayer and

## few-layered MoS<sub>2</sub>

Guang Yi Jia, \*a,b Yue Liu, a Jing Yu Gong, Dang Yuan Lei, \*b Dan Li Wang and Zhen Xian Huang a

<sup>a</sup>School of Science, Tianjin University of Commerce, Tianjin 300134, PR China <sup>b</sup>Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China \*E-mail addresses: gyjia87@163.com; dylei@polyu.edu.hk



**Fig. S1** (a) Measured reflectance and transmittance spectra and (b) derived complex optical conductivity  $\sigma = \sigma_1 + i\sigma_2$  for a monolayer MoS<sub>2</sub> film. The inset in (a) shows the measured Raman spectrum of the sample under excitation by a 532-nm laser.

A monolayer MoS<sub>2</sub> film (1.0×1.0 cm<sup>2</sup>) was fabricated on a sapphire (Al<sub>2</sub>O<sub>3</sub>) substrate of 0.35 mm thickness by chemical vapor deposition (CVD) method.<sup>1</sup> The Raman spectrum excited by 532 nm laser is shown in the inset of Fig. S1. Both  $E_{2g}^{1}$  and A<sub>1g</sub> peaks are clearly observed, with a peak difference of 18.8 cm<sup>-1</sup>, indicating that the prepared sample is indeed monolayer.<sup>2</sup> By using a UV-3600 double-beam spectrophotometer, the reflectance and transmittance spectra were measured, with results shown in Fig. S1a. One can find three peaks (dips) located at around ~1.87, ~2.00 and ~2.86 eV in the

reflectance (transmittance) spectrum, which correspond to the A, B and C excitonic absorption peaks of the MoS<sub>2</sub> film, respectively. According to Eqs. (3) and (4), the complex optical conductivity  $\sigma = \sigma_1$ +  $i\sigma_2$  can be derived, with results presented in Fig. S1b. It is seen that both values of  $\sigma_1$  and  $\sigma_2$  are positive.



**Fig. S2** (a) Excitonic reflectance intensity, and magnitudes of (b)  $\sigma_{1,A}$ ,  $\sigma_{1,B}$ ,  $\sigma_{1,C}$ , (c)  $\sigma_{2,A}$ ,  $\sigma_{2,B}$  and  $\sigma_{2,C}$ . Hollow symbols are the calculated results by using the dielectric function of bulk MoS<sub>2</sub>, and dotted lines are just drawn as a guide to the eye. Solid symbols are the results extracted from Fig. 2, *i.e.*, the calculated results by using the layer-dependent dielectric functions of MoS<sub>2</sub>. Dashed lines are the fitting results by using Eq. (6).

## References

- 1 Q. Ji, M. Kan, Y. Zhang, Y. Guo, D. Ma, J. Shi, Q. Sun, Q. Chen, Y. Zhang and Z. Liu, *Nano Lett.*, 2015, **15**, 198–205.
- 2 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, *Adv. Funct. Mater.*, 2012, **22**, 1385–1390.