Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Characterization of a P-Type Photomechanical Molecular Crystal Based on the E→Z Photoisomerization of 9-Divinylanthracene Malonitrile

Lingyan Zhu⁽¹⁾, Fei Tong⁽¹⁾, Norhan Zaghloul⁽²⁾, Omar Baz⁽²⁾, Christopher J. Bardeen^{(1)*}, Rabih O. Al-Kaysi^{(2)*},

⁽¹⁾ Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside, CA 92521 (USA)

⁽²⁾ College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11426, (Kingdom of Saudi Arabia)

> *E-mail: <u>kaysir@ksau-hs.edu.sa</u>, <u>rabihalkaysi@gmail.com</u> <u>christopher.bardeen@ucr.edu</u>

Figure S1. IR spectrum of (E)-9DVAM over KBr

Figure S2. ¹H-NMR of (E)-9DVAM in CDCl₃

Figure S3. IR spectrum of (Z)-9DVAM over KBr

Figure S4. ¹H-NMR of (Z)-9DVAM with 5% E-9DVAM isomer in CDCl₃

Table S1. Crystal data and structure refinement for (E)-9DVAM, and conditions to prepare single crystal

Figure S5. UV-Vis spectra of (E)-9DVAM in different solvents, color = solvent

Figure S6. The absorption spectra of (E)-9DVAM in THF

Figure S7. Fluorescence lifetime data and the corresponding emission spectra of (E)-9DVAM in different wavelength ranges

Figure S8. UV-Vis absorption spectra of (E)-9DVAM as a solid-state crystalline thin film and in solution with THF as the solvent

Figure S9. UV-Vis absorption spectra of (Z)-9DVAM as a solid-state crystalline thin film and in solution with THF as the solvent

Figure S10. HPLC analysis of (E)-9DVAM photoproducts after photolysis in solution

Figure S11. HPLC analysis of photoproducts from photolysis of crystalline (E)-9DVAM

Figure S12. Optical microscopy images of (E)-9DVAM microribbon actuating between UV (365 nm) and visible light (535 nm)

Figure S13. Optical microscopy images of (E)-9DVAM microcrystals actuating between UV (365 nm) and visible light (535 nm)

Figure S14. Powder X-ray diffraction patterns of (E)-9DVAM nanorods

Figure S1. IR spectrum of (E)-9DVAM over KBr

Figure S2. H-NMR of (E)-9DVAM in CDCl₃ δ (ppm): 7.30-7.48 (dd, 1H), 7.50-7.69 (m, 4H), 7.87-7.91 (d,1H), 8.03-8.05 (d, 2H), 8.16-8.19 (d, 2H), 8.32-8.36 (d, 1H), 8.52 (s 1H)

Figure S3. IR spectrum of (Z)-9DVAM over KBr

Figure S4. H-NMR of (Z)-9DVAM with 5% E-9DVAM isomer in CDCl₃ δ (ppm): 7.07-7.15 (d, 1H), 7.35-7.39 (t, H), 7.50-7.55 (m, 5H), 7.85-7.89 (m, 2H), 8.04-8.09 (m, 2H), 8.55 (s, 1H)

Empirical formula	$C_{20} H_{12} N_2$	
Formula weight	280.32	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n (#14)	
Unit cell dimensions	a = 19.293(3) Å	<i>α</i> = 90°.
	b = 4.0674(7) Å	β=118.107(3)°.
	c = 20.370(4) Å	$\gamma = 90^{\circ}$.
Volume	1410.0(4) Å ³	
Ζ	4	
Density (calculated)	1.321 Mg/m ³	
Absorption coefficient	0.078 mm ⁻¹	
F(000)	584	
Crystal size	0.587 x 0.072 x 0.010 mm ³	
Theta range for data collection	1.999 to 25.342°.	
Index ranges	-23<=h<=23, -4<=k<=4, -24<=l<=24	
Reflections collected	23666	
Independent reflections	2577 [R(int) = 0.0795]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2577 / 0 / 199	
Goodness-of-fit on F ²	1.024	
Final R indices [I>2sigma(I)]	R1 = 0.0519, $wR2 = 0.1248$	
R indices (all data)	R1 = 0.0809, wR2 = 0.1413	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.243 and -0.218 e.Å ⁻³	

Table S1. Crystal data and structure refinement for (E)-9DVAM

Crystal Growth Conditions

To grow large single crystals for x-ray structure determination, (E)-DVAM (5 mg) was spread inside a small aluminum weighing pan and placed inside a vacuum drying vessel. A 1 cm diameter glass cylinder was placed surrounding the (E)-9DVAM powder. The vessel was heated to 200 °C under reduced pressure (20 mbar). The (E)-9DVAM quickly sublimes and deposits on the surface of the glass cylinders as large X-ray quality crystals. A sample of these sublimed crystals was analyzed by HPLC to confirm purity and that no decomposition had taken place.

Figure S5. UV-Vis spectra of (E)-9DVAM in different solvents.

Figure S6. (a) The absorption spectrum of (E)-9DVAM in THF under 532 nm laser (Power = 1.91 mW/cm²). Isosbestic points are at 343 nm and 392 nm. (b) The absorption of (E)-9DVAM at 462 nm in THF with the increasing of 532 nm laser irradiation. The data points are fit to the exponential in equation $A(462nm,t) = A_0 e^{-k_{abs}t} + A_{pss}$ and the analysis follows that in Hanson et al., *Photochem. Photobio. Sci.* **2015**, 14, 1607–1616.

Figure S7. (a) Fluorescence lifetime data for (E)-9DVAM (red) overlaid with the instrument response function (black). 80% of the signal decays within the 30 ps time-response of the streak camera. The long-lived (~1 ns) component is due to a residual impurity centered at 450 nm that slightly overlaps the emission centered at ~550 nm. Time-resolved fluorescence lifetime data were collected using a Hamamastsu C4334 Streakscope. The E-9DVAM sample was dissolved in THF (~1.0 x 10^{-4} M). The excitation source was a 200 fs pulse centered at 400 nm, derived from frequency doubling the 800 nm output of a Coherent Libra MaiTai Ti: sapphire laser system at 1 kHz.

Figure S8. UV-Vis absorption spectra of (E)-9DVAM as a solid-state crystalline thin film and in solution with THF as the solvent. 1.5 mg solid of (E)-9DVAM was dissolved in 300 μ L methylene chloride, then evaporated on a glass slide. During the evaporation period of solvent, 200 μ L more methylene chloride was deposited onto the glass slide to get high quality solid-state thin film for UV-Vis absorption spectrum.

Figure S9. UV-Vis absorption spectra of (Z)-9DVAM solid-state crystalline thin film (blue line) and in solution with THF as the solvent (red line). The crystalline thin film of (Z)-9DVAM was prepared by depositing a solution of (Z)-9DVAM (1.5 mg) in 400 μ L methylene chloride on a clean glass slide and allowing the solvent to slowly evaporate.

Figure S10. HPLC analysis of solution photolysis products from (E)-9DVAM: (**a**) pure (E)-9DVAM in acetonitrile (100%); (**b**) (E)-9DVAM in acetonitrile after 10 min photolysis with 535 nm (91% (Z)-9DVAM, 9% (E)-9DVAM); (**c**) Solution (b) after photolysis with 365 nm, which leads to 55% (Z)-9DVAM versus 45% (E)-9DVAM). The mobile phase was 60% CH₃CN, 40% water, pH = 2.5, Flow rate = 1.5 mL/min, Detector = 260 nm.

Figure S11. HPLC analysis of crystalline (E)-9DVAM photolysis products: (a) Pure (E)-9DVAM (100%); (b) (E)-9DVAM crystals after photolysis using 535 nm (75% (Z)-9DVAM, 25% (E)-9DVAM); (c) Sample (b) after photolysis with 365 nm (65% (Z)-9DVAM, 35% (E)-9DVAM). The mobile phase is 60% CH₃CN, 40% water, pH = 2.5, Flow rate = 1.5 mL/min, Detector = 260 nm.

Figure S12. Sequential optical microscopy images of (a) Sublimed (E)-9DVAM microribbon inside of a glass tube, with one end attached to the glass tube; (b) after 535 nm irradiation, the ribbon bent slightly; (c) after 365 nm irradiation, the ribbon straightened; (d) after 535 nm irradiation, the ribbon bent again; (e) after 365 nm irradiation, the ribbon straightened; (f) after 535 nm irradiation, the ribbon bent; (g) after 365 nm irradiation, the ribbon straightened; (h) after 535 nm irradiation, the ribbon bent; (g) after 365 nm irradiation, the ribbon straightened; (h) after 535 nm irradiation, the ribbon bent; (i) after 365 nm irradiation, the ribbon straightened; (j) after 535 nm irradiation, the ribbon bent; (i) after 365 nm irradiation, the ribbon straightened; (j) after 535 nm irradiation, the ribbon bent; (i) after 365 nm irradiation, the ribbon straightened; (j) after 535 nm irradiation, the ribbon bent; (i) after 365 nm irradiation, the ribbon straightened; (j) after 535 nm irradiation, the ribbon bent; (k) after 365 nm irradiati

Figure S13. Optical microscopy images of a group of (E)-9DVAM microribbons actuating between UV and visible wavelength light: (a) before irradiation (b) after 535 nm light irradiation the ribbons bent away from the center; (c) after 365 nm irradiation the ribbons close up again ; (d) after 535 nm irradiation the ribbons bend away from the center. Scale bar = $120 \mu m$.

Figure S14. X-ray diffraction patterns of powders obtained by grinding up (E)-9DVAM nanowires (~200 nm in diameter) embedded in an Anodic Aluminum Oxide template (Andisc-13 from Whatman Inc). Panels (a) and (b) are two different experiments that both show the signature diffraction peak at approximately 16°, as well as weaker intensity features near 11°. Both features are also seen in the PXRD pattern of powdered crystalline (E)-9DVAM in Figure 5, confirming that the nanowires are crystalline. The broad feature between 20° and 25° is due to scattering by the amorphous alumina.