Supporting information

Nanoscale LnMOF-functionalized nonwoven fiber protected by polydimethysiloxane coating layer as highly sensitive ratiometric oxygen sensor

Xiao-Yu Xu and Bing Yan*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

*E-mail: byan@tongji.edu.cn.

Fig. S1 FTIR spectra of pristine PP and oxidation treated PP (O-PP). The spectra of pristine PP exhibited the characteristic peaks at 2950, 2915, 2833, and 1454 cm⁻¹. These peaks correspond to asymmetric -CH₃, asymmetric -CH₂-, and symmetric -CH₂- stretching vibration and methylene deformation in the PP.^{S1} The peaks at 803 cm⁻¹ correspond to CH₂ rocking, C-C chain stretching, and C-CH stretching; those at 897 cm⁻¹ correspond to CH₂ rocking and C-CH₃ stretching; those at 975 cm⁻¹ correspond to CH₃ rocking and C-C chain stretching; those at 1164cm⁻¹ correspond to CH₂ twisting, C-C chain stretching, and CH bending; and those at 1373 cm⁻¹ correspond to CH₃ symmetric bending and CH₂ wagging.^{S2}

Fig. S2 Structure of SUMOF-6-Eu viewed along the [001] (a), [100] (b) and [010] (c) directions, respectively. EuO_n polyhedral are shown in purple; oxygen, carbon and nitrogen atoms in red, gray and blue, respectively. Hydrogen atoms and guest molecules are omitted for clarity.

Fig. S3 (a) PXRD patterns of simulated MOFs, as-prepared MOFs and nanoscale MOFs (NMOFs); (b) SEM images of low magnification and high magnification of as-prepared MOFs and (c) SEM images of low magnification and high magnification of as-prepared NMOFs.

Fig. S4 Thermal gravimetric analysis (TGA) of NMOFs (blue line) and Coated NMOFs (red line). At first step (300-400 °C, partial decomposition of the organic ligand), coated NMOFs show less weight loss than pristine one due to the presence of PDMS layer. When heated over 400 °C, the departure of remaining organics in MOFs and silicone molecules occurs. And in this step, the more weight loss (40.52%) of coated NMOFs can provide additional condition to prove the presence of the layer.

Fig. S5 Room-temperature photoluminescence spectra of H_2 bpydc (black: excitation; red: emission) in solid state.

Fig. S6 UV-vis absorption spectra of suspended H₂bpydc and NMOFs in aqueous solution. The π - π^* absorption band of H₂bpydc shows a significant blue-shift (12 nm) after binding to Eu³⁺ ions. This indicates the formation of coordination bonds between the Eu³⁺ ions and free –COOH of in H₂bpydc.^{S3}

Fig. S7 The FTIR spectra of NMOFs (black line), NMOFs@O-PP (red line) and coated NMOFs@O-PP (blue line). The instet is partial enlarged detail in range of 2000-1000 cm⁻¹ of NMOFs@O-PP (red line) and coated NMOFs@O-PP (blue line).

Fig. S8 (a) Represcentative SEM image of NMOFs@O-PP fabric and (b) SEM elemental mapping of Eu distribution on the fabric in green demonstrating overall distribution of Eu throughout the material.

Fig. S9 Day-to-day fluorescence stability of NMOFs@O-PP (a) and coated NMOFs@O-PP (b) in laboratory air (55% relative humidity) under excitation at 395 nm.

Fig. S10 Illustration of PDMS-coating on the surface of NMOFs@O-PP. The cuboids represent the structure of NMOFs.

Fig. S11 (a) Represcentative SEM image of coated NMOFs@O-PP fabric, SEM elemental mapping of (b) Si distribution on the fabric in white and (c) Eu distribution on the fabric in green.

Fig. S12 N₂ sorption isotherms for NMOFs@O-PP and PDMS-coated NMOFs@O-PP.

Fig. S13 (a) The relative intensities of ligand (I_L , 557 nm) and Eu^{3+} (I_{Eu} , 614 nm) under different oxygen partial pressure Po_2 and (b) The inset is corresponding CIE chromaticity coordinates calculated from the emission spectra shown in (Fig. 4a).

Fig. S14 Luminescence decay times (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) of coated NMOFs@O-PP films after exposed to O₂ of different Po₂. The excitation wavelength is 336 nm.

Fig. S15 Emission spectra of coated NMOFs@O-PP film under different oxygen partial pressure Po₂, λ_{ex} =336 nm.

Fig. S16 (a) Emission spectra of coated NMOFs power under different oxygen partial pressure ($Po_2 = 0$ or 100). The inset is relative intensities of ligand (I_L , 557 nm) and Eu^{3+} (I_{Eu} , 614 nm) calculated by luminescent spectra; (b) Emission spectra of NMOFs@O-PP film under different oxygen partial pressure ($Po_2 = 0$ or 100). The inset is relative intensities of ligand (I_L , 557 nm) and Eu^{3+} (I_{Eu} , 614 nm) calculated nm) calculated by luminescent spectra. The quenching efficiencies of (a) and (b) are calculated to be 80.2% and 55.9%, respectively.

Fig. S17 (a) Emission spectra of coated NMOFs@O-PP monitored in pure O_2 (Po₂ = 0.21) (blue line) and air (red line) at room temperature and (b) Comparison of relative intensities of ligand (I_L, 557 nm) and Eu³⁺ (I_{Eu}, 614 nm) calculated by luminescent spectra.

Fig. 18 Luminescence intensity ratio (I_{Eu}/I_L) values monitored in pure O₂ (Po₂ = 0.21) (red dots) and air (black dots) for six cycles (λ_{ex} = 395 nm).

Fig. S19 Emission spectra of coated NMOFs@O-PP monitored for different times (0, 1, 3, 5 and 7 days) upon 395 nm excitation when exposed to $0\% O_2$ (a) and $100\% O_2$ (b).

Fig. S20 (a) Emission spectra of coated NMOFs@O-PP upon 395 nm excitation after exposed to air, acetone, p-xylene and toluene; (b) Comparison of relative intensities of ligand (I_L , 557 nm) and Eu³⁺ (I_{Eu} , 614 nm) in coated NMOFs@O-PP exposed to air, acetone, p-xylene and toluene and (c) The device of coated NMOFs@O-PP for vapors and corresponding optical photograph under UV light irradiation at 365 nm.

Table	S1	luminescence	lifetime	(τ)	and	absolute	quantum	yield	(φ)	of	pristine	and	coated
NMO	Fs@	O-PP.											

NMOFs@O-PP	τ (ms)	ф (%)	λ _{ex} (nm)	λ _{em} (nm)
pristine	0.765	46	333	614
coated	1.074	62	336	614
coated	0.386	12	395	614

Luminophor	Quenching efficiency	I ₀ /I ₁₀₀	K _{sv} , R ²	Detection limit (LOD)	Referenc e
Yb ³⁺ @bio-MOF-1	40%	1.67	NR	NR	14a
Eu(tta)₃phen	NR	2.4	0.015, 0.996	NR	14b
CPMϽ⊃Tb³⁺	47%	1.89	0.78, 0.9971	1.7%	5
Ir complexes doped Uio-67	29%	1.41ª	78.6 ^b , NR	0.76	14c
Ru complexes doped Uio-67	60%	2.5ª	227.5 ^b , NR	8.4%	14c
0.32Ru:MAF-34	75%	4	8.5 [♭] , NR	1.5	14d
Coated NMOFs@O-PP	89.9%	7.66	6.73, 0.99765	0.45%	This work

Table S2 Comparison of the key parameters of known O2-sensing systems.

NR: Not reported.

 $^{\rm a}$ The value is reported at 0.8 bar $\rm O_2~(I_0/I_{80})$

^b The value is the largest K_{sv} value obtained by nonlinear Stern-Volmer plot.

Reference

S1. N. Gomathi, R. Rajasekar, R. R. Babu, D. Mishra, S. Neogi, *Mater. Sci. Eng. C*, 2012, **32**, 1767-1778.

S2. V. K. Thakur, D. Bemmerberg, M. R. Kessler, ACS Appl. Mater. Inter., 2014, 6, 9349-9356.

S3. Y. Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A. M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, *J. Phys. Chem. C*, 2013, **117**, 11302-11310.