Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

J. Mater. Chem. C

Supplementary Information

Aromatic Azaheterocycle-Cored Luminogens with Tunable Physical Properties via Nitrogen Atoms for Sensing Strong Acids

Ruizhi Tang,^a Xinyang Wang,^a Wanzheng Zhang,^a Xiaodong Zhuang,^{*,a} Shuai Bi,^a Wenbei Zhang,^a Fan Zhang,^{*,a}

^a School of Chemistry and Chemical engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

E-mail: fan-zhang@sjtu.edu.cn; zhuang@sjtu.edu.cn

Table of Contents

1. Optical Spectra	S2
2. ¹ H and ¹³ C NMR Spectra for New Compounds	S11

1. Optical Spectra

Fig. S1 Normalized absorption spectra of PY-TPE (a), PYM-TPE (b), PYA-TPE (c), PYD-TPE (d) and PTZ-TPE (e) in in different solvents.

Fig. S2 Fluorescence spectra of BZ-TPE (**a**) in CH₃CN–water mixtures $(1.0 \times 10^{-5}$ M, excited at 332 nm) with varied volumetric fractions of water; (**b**) the fluorescence intensity change spectra of BZ-TPE at different content of water.

Fig. S3 Fluorescence spectra of PY-TPE (**a**) in CH₃CN–water mixtures $(1.0 \times 10^{-5}$ M, excited at 340 nm) with varied volumetric fractions of water; (**b**) the fluorescence intensity change spectra of PY-TPE at different content of water.

Fig. S4 Fluorescence spectra of PYM-TPE (**a**) in CH₃CN–water mixtures $(1.0 \times 10^{-5}$ M, excited at 346 nm) with varied volumetric fractions of water; (**b**) the fluorescence intensity change spectra of PYM-TPE at different content of water.

Fig. S5 Fluorescence spectra of PYA-TPE in CH₃CN–water mixtures $(1.0 \times 10^{-5}$ M, excited at 363 nm) with varied volumetric fractions of water; (**b**) the fluorescence intensity change spectra of PYA-TPE at different content of water.

Fig. S6 Fluorescence spectra of PYD-TPE (a) and PTZ-TPE (b) in CH_3CN -water mixtures (1.0 $\times 10^{-5}$ M) with varied volumetric fractions of water.

Fig. S7 Fluorescence decay curve for BZ-TPE in CH₃CN–water (90%) mixtures (1×10⁻⁵ M).

Fig. S8 Fluorescence decay curve for PY-TPE in CH₃CN-water (90%) mixtures (1×10⁻⁵ M).

Fig. S9 Fluorescence decay curve for PYM-TPE in CH₃CN–water (90%) mixtures (1×10⁻⁵ M).

Fig. S10 Fluorescence decay curve for PYA-TPE in CH₃CN–water (90%) mixtures (1×10⁻⁵ M).

Fig. S11 Fluorescence decay curve for PYD-TPE in CH₃CN–water (90%) mixtures (1×10⁻⁵ M).

Fig. S12 Fluorescence decay curve for PTZ-TPE in CH₃CN–water (90%) mixtures (1×10⁻⁵ M).

Fig. S13 Fluorescence decay curve for H⁺@PTZ-TPE in in CH₃CN–water (90%) mixtures (1×10^{-5} M).

Fig. S14 Absorption emission spectral change in PY-TPE (a), PYM-TPE (b), PYA-TPE (c), PYD-TPE (d) and PTZ-TPE(e) in CH₃CN (2×10^{-5} M) with the addition of TFA in different molar ratios.

Fig. S15 Normalized emission spectra of initial, TFA fumed and TEA fumed (a) and the fluorescent recovery cycles (b) of the test silica support of PY-TPE. The pictures of (c) PY-TPE on a silica support under ambient light and (d) $H^+@$ PY-TPE under UV light (bottom.

Fig. S16 Normalized emission spectra of initial, TFA fumed and TEA fumed (a) and the fluorescent recovery cycles (b) of the test silica support of PYM-TPE. The pictures of (c) PYM-TPE on a silica support under ambient light and (d) H⁺@ PYM-TPE under UV light.

Fig. S17 Normalized emission spectra of initial, TFA fumed and TEA fumed (a) and the fluorescent recovery cycles (b) of the test silica support of PYA-TPE. The pictures of (c) PYA-TPE on a silica support under ambient light and (d) H⁺@ PYA-TPE under UV light.

Fig. S18 Normalized emission spectra of initial, TFA fumed and TEA fumed (a) and the fluorescent recovery cycles (b) of the test silica support of PYD-TPE. The pictures of (c) PYD-TPE on a silica support under ambient light and (d) H⁺@ PYD-TPE under UV light.

Fig. S19 Fluorescence spectra of PYD-TPE (a) in CH₃CN–water mixtures $(1.0 \times 10^{-3} \text{ M}, 150 \text{ equiv})$ TFA excited at 380 nm) with varied volumetric fractions of water; (b) the fluorescence intensity change spectra of PYD-TPE at different content of water.

Fig. S20 Emission spectra of PTZ-TPE at 1×10^{-3} M in in CH₃CN–water (90%) mixtures with the addition of (150 equiv different organic acids). (a) acetic acid. (b) lactic acid. (c) ortho-hydroxybenzoic acid. (d) tartaric acid. (e) phosphoric acid. (f) oxalic acid. (g) trifluoroacetic acid.

2. ¹H and ¹³C NMR Spectra for New Compounds

Fig. S22 ¹³C NMR spectra of PY-TPE (100MHz, CDCl₃, ppm)

Fig. S23 ¹H NMR spectra of PYM-TPE (400MHz, CDCl₃, ppm)

Fig. S24 ¹³C NMR spectra of PYM-TPE (100MHz, CDCl₃, ppm)

Fig. S26 ¹³C NMR spectra of PYA-TPE (100MHz, CDCl₃, ppm)

Fig. S28 ¹³C NMR spectra of PYD-TPE (100MHz, CDCl₃, ppm)

