Supporting information of

Set of manganese ions activated fluoride phosphors (A₂BF₆:Mn⁴⁺, A=K, Na, B=Si, Ge, Ti): Synthesis below 0 °C and efficient room-temperature photoluminescence

Fei Tang,^a Zhicheng Su,^a Honggang Ye,^a Mingzheng Wang,^a Xin Lan,^b David Lee Phillips,^b Yongge Cao,^c and Shijie Xu^{a*}

^aDepartment of Physics, and Shenzhen Institute of Research and Innovation (SIRI), The University of Hong Kong, China

^bDepartment of Chemistry, The University of Hong Kong, China

^cDepartment of Physics, Renmin University of China, Beijing 100872, China

Raw	Source	Grade	Function
materials			
HF	Aladdin Chemistry Co.,	49wt.% in H2O,	Solvent,
	China	99.99998% metal basis	Reactant
KHF ₂	Aikeshiji Chemistry	AR, 99%	Reactant,
	Co., China		Catalyzer
NaHF ₂	Aikeshiji Chemistry	98%	Reactant,
	Co., China		Catalyzer
KMnO ₄	Guanchen Co. China	99.3%	Reactant,
			Oxidizer
H_2O_2	Aladdin Chemistry Co.,	AR, 30wt.% in H2O	Reactant,
	China		deoxidizer
K ₂ TiF ₆	Aladdin Chemistry Co.,	AR, 99.5%	Reactant,
	China		Ti source
H_2SiF_6	Aladdin Chemistry Co.,	GR, 30-32wt.%	Reactant,
	China		Si source
GeO ₂	Aladdin Chemistry Co.,	99.99% metal basis,	Reactant,
	China	>200 mesh	Ge source

Table s1 Specific information of the raw materials used in our synthesis experiment.

Table s2 Energetic positions of the ZPL lines and the major phonon sidebands in the PL spectra of the synthesized phosphors.

Fluorides	ZPL(eV)	Phonon		Phonon		Phonon	
		sideband1		sideband2		sideband3	
		S.	Anti-S.	S.	Anti-S.	S.	Anti-S.
K ₂ TiF ₆ :Mn ⁴⁺	1.9916	1.9637	2.0182	1.9489	2.0333	1.9133	2.0643
K ₂ GeF ₆ :Mn ⁴⁺	1.9945	1.9657	2.0205	1.9521	2.0365	1.9138	2.0701
K ₂ SiF ₆ :Mn ⁴⁺	1.9954	1.9664	2.0226	1.9531	2.0375	1.9154	2.0746
Na ₂ SiF ₆ :Mn ⁴⁺	2.0072	1.9772	2.0362	1.9648	2.0505	1.9285	2.0859

Noted that "S." denotes the peak positions of the Stokes phonon sidebands, while "Anti-S." represents the peak positions of the anti-Stokes bands.

Figure s1. A schematic diagram showing the three synthesizing schemes in the preparation of red phosphors: I for synthesizing KTFM; II for both KSFM and NaSFM; III for KGFM.

Figure s1 depicts the three synthesizing schemes for the fluoride phosphors based on the B compounds. In scheme I, K_2BF_6 compound is directly adopted to react with K_2MnF_6 via the cation exchange between B⁴⁺ and Mn⁴⁺. In scheme II, H₂BF₆ solution is used to react with the admixture of K_2MnF_6 and AHF₂. Being different from the cation exchange reaction, this kind of reaction directly produces the final product via no generation of K_2BF_6 compound. In synthesizing scheme III, the oxide of BO₂ is employed as B source materials, which could be the most complex one since the two above-described reaction mechanisms may simultaneously occur in it, leading to the generation of two different hexagonal phases during this process.

Figure s2. (a) Luminescence spectrum of a warm white LED prepared with the admixture of the KSFM red phosphor and the commercial YAG:Ce³⁺ yellow phosphor plus a 450 nm InGaN/GaN blue LED. The inset is a photo of the warm white LED; (b) The chromaticity coordinates of the LED with CCT of 2704 K at the position of (0.4635, 0.4176).

Figure s2(a) illustrates the full color luminescence spectrum of a warm white LED

device at room temperature, which is prepared with a 450 nm InGaN/GaN blue LED + a coating layer of the mixed phosphor of red KSFM and yellow YAG:Ce³⁺. The inset figure is a photon of the warm white LED with a color coordination of (0.4635, 0.4176) shown in **Figure s2(b)**. The warm white light of the composite LED possesses a low correlated color temperature (CCT) of 2704 K and a high color render index (CRI) of 81.2. And its luminous efficiency is as high as 122 lm/W. These good properties indicate a promising application of our phosphors in the back-light displaying and indoor lighting fields.