Supporting Information

Highly planar cross-conjugated alternating polymers with multiple conformational locks: synthesis, characterization and their fieldeffect properties

Weifeng Zhang,^a† Zupan Mao,^a† Naihang Zheng,^a Jiabin Zou,^b Liping Wang,^{*b} Congyuan Wei,^a Jianyao Huang,^a Dong Gao^a and Gui Yu^{*a,c}

^aBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China ^bSchool of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China ^cUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

1.2 1.0 Weight (wt %) 0.8 DTO-C1 0.6 DTO-C3 0.4 0.2 0.0 100 200 300 400 500 0 **Temperature (°C)**

1. Thermal properties of the polymers PDTO-C1 and PDTO-C3

Fig. S1 TGA curves of the polymers PDTO-C1 and PDTO-C3.

2. The electrochemical properties of the polymers PDTO-C1 and PDTO-C3.

Fig. S2 CV traces of the polymers PDTO-C1 and PDTO-C3.

3. Typical transfer and output characteristics of the OFETs based on PDTO-C1.

Fig. S3. The typical transfer and output characteristics of the OFETs based on PDTO-C1.

4. Synthetic procedures of PDPP-TC2T and PDPP-DTE.

For obtaining better comparisons, PDPP-TC2T sample was also synthesized according to reported methods (Scheme S1).¹ The PDPP-DTE sample was

synthesized based on previous literature.²

Scheme S1 Synthetic routes of alternating polymers PDTO-TC2T.

1,2-di(thiophen-2-yl)ethane (S1): An established method was adopted using 1,2-di(thiophen-2-yl)ethane-1,2-dione (1.00 g), 85% hydrazine hydrate (1.3 mL), KOH (1.8 g), and ethylene glycol (15 mL) to give the title compound as a colorless crystal (340 mg, 39 %). ¹H NMR (300 MHz, CD₂Cl₂): 7.16 (dd, J = 5.1 Hz, J = 0.9 Hz, 2H), 6.84 (dd, J = 5.1 Hz, J = 3.3 Hz, 2H), 6.73 (d, J = 3.0 Hz, 2H), 3.10 (s, 4H). HRMS: Calcd. for [C₁₀H₁₀S₂]⁺: 194.0224; Found: 194.0221.

1,2-bis((5-trimethylstannyl)thiophen-2-yl)ethane (S2): An established method was adopted using S1 (300 mg, 1.54 mmol), 2.5 M n-BuLi in hexanes (1.8 mL, 4.6 mmol), 1.0 M trimethyltin chloride in hexanes (4.8 mL, 4.8mmol), and anhydrous tetrahydrofuran (15 mL) affording the title compound as a white solid (224 mg, 28 %). ¹H NMR (300 MHz, CD₂Cl₂): 6.93 (d, J = 3.3 Hz, 2H), 6.85 (d, J = 3.3 Hz, 2H), 3.13 (s, 4H), 0.25 (s, 18H). HRMS: Calcd. for [C₁₆H₂₆S₂Sn₂]⁺: 519.9514; Found: 519.9518. **PDPP-TC2T**. An established method was adopted using S2 (0.2 mmol), dibromo-DPPs (0.2 mmol), Pd₂(dba)₃ (6 mg) and P(*o*-tol)₃ (17 mg) and chlorobenzene (5.0 mL) to afford the desired polymer martial (193 mg, 84 %). GPC: $M_n = 14.3$ kDa, $M_w = 40.0$ kDa, PDI = 2.34. Elemental Anal. Calcd. for $C_{72}H_{112}N_2O_4S_4$: C, 74.17; H, 9.68; N, 2.40; Found: C 72.79, H 9.19, N 2.52.

1. X. K. Zhao, Y. Zhao, Q. Ge, K. Butrouna, Y. Diao, K. R. Graham and J. G. Mei, Macromolecules, 2016, 49, 2601–2608.

2. H. J. Chen, Y. L. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. T. Liu and Y. Q. Liu, *Adv. Mater.*, 2012, **24**, 4618–4622.

5. Typical transfer and output characteristics of the OFETs based on PDPP-TC2T and PDPP-DTE.

Fig. S4 The typical transfer and output characteristics of the FET devices based on PDPP-TC2T and PDPP-DTE. (a), (c) PDPP-TC2T after annealing at 100 °C; (b), (d) PDPP-DTE after annealing at 180 °C.

6. X-ray crystallographic data

Tuble 51 Crystal data and structure reministent for allotomo D 10,	Table S1.	Crystal data an	d structure refinement	for dibro	mo-DTO, 3	3
---	-----------	-----------------	------------------------	-----------	-----------	---

Identification code	sa3394		
Empirical formula	$C_{10}H_4Br_2O_2S_2$		
Formula weight	380.07		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	$a = 5.7908(6) \text{ Å} \alpha = 90^{\circ}$		
	$b = 11.3325(13) \text{ Å} \beta = 90^{\circ}$		
	$c = 17.3880(19) \text{ Å} \gamma = 90^{\circ}$		
Volume	1141.1(2) Å ³		
Ζ	4		
Density (calculated)	2.212 mg/m ³		
Absorption coefficient	7.448 mm ⁻¹		
F(000)	728		
Crystal size	$0.69\times0.18\times0.1~mm^3$		
Theta range for data collection	3.596 to 27.480°		
Index ranges	-7<=h<=7, -12<=k<=14, -12<=l<=22		
Reflections collected	4648		
Independent reflections	2548 [R(int) = 0.0264]		
Completeness to theta = 26.000°	99.3 %		
Absorption correction Semi-empirical from equivalents			
Max. and min. transmission	1.0000 and 0.3890		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2548 / 0 / 145		
Goodness-of-fit on F ²	1.069		
Final R indices [I>2sigma(I)]	R1 = 0.0277, wR2 = 0.0571		
R indices (all data)	R1 = 0.0297, wR2 = 0.0582		
Absolute structure parameter	0.023(9)		

Extinction coefficient	n/a
Largest diff. peak and hole	0.319 and -0.555 e.Å ⁻³

7. The annealing temperature-dependent mobilities of PDTO-C1 and PDTO-C3based devices.

Table S2. The mobilities of PDTO-C1 and PDTO-C3-based FET devices before and after annealed at different temperatures.

Polymer	T_{an}^{a}	μ	I /I	V_{th}
	°C	$cm^2 V^{-1} s^{-1}$	$-I_{on}/I_{off}$ -	V
	25	0.02 ^b (0.028) ^c	>104	5~-5
	60	0.05 (0.070)	>10 ⁵	-5~-10
BDTO C1	100	0.08 (0.095)	>106	-5~-10
rbio-ci	120	0.11 (0.14)	>106	-5~-10
	140	0.18 (0.22)	>106	-5~-10
	160	0.13 (0.16)	>106	-5~-10
PDTO-C3	25	0.08 (0.10)	>104	-5~-10
	60	0.21 (0.24)	>10 ⁵	0~-10
	100	0.28 (0.40)	>106	0~-10
	120	0.36 (0.54)	>106	0~-10
	140	0.31 (0.43)	>106	0~-10

^aAnnealing temperature. ^bAverage mobility. ^cThe highest mobility.

8. ¹H NMR and ¹³C NMR spectra

