Supporting Information

A surface oxide layer of copper nanowires enhanced the UV selective

response of a ZnO film photodetector

Feng Teng, Lingxia Zheng, Kai Hu, Hongyu Chen, Yanmei Li, Zhiming Zhang and Xiaosheng

Fang*

Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.

E-mail: xshfang@fudan.edu.cn (X.S. Fang)

Fig. S1. The cross-section image of ZnO film prepared by spin-coating method.

Fig. S2. The Cu 2p XPS spectra.

Fig. S3. The semi-log I-V curves of the Cu NW/ZnO PD in dark and under 360, 400 and 500 nm light illumination.

Fig. S4. The photo responsivity spectra of the Cu NW/ZnO composite with the UV light illuminated from the back side.

MSM type PDs based on ZnO films	Preparation method	Contact type	Bias voltage	Responsivity at UV region	Rejecti on ratio	Ref.
Au/ZnO film/Au	Molecular-beam epitaxy	Schottky/ Schottky	0 V	20 mA/W	100	1
Au/ZnO film/In	RF magnetron sputtering	Schottky/ Ohmic	5 V	0.36 mA/W	104	2
Au/ZnO rods/Au	Hydrothermal	Schottky/ Schottky	1 V	1.44×10 ⁵ A/W	17.4	3
Au/Density ZnO rods/Au			1 V	7.01×10 ³ A/W	281.2	
Au/ZnO:Ga/Au	Aqueous solution method	Schottky/ Schottky	1 V	5.75 A/W	36.1	4
Au/ZnO wall/Au	Thermal evaporation	Schottky/ Schottky	5 V	$\sim 4 \text{ A/W}$	29	5
AuAg/ZnO rods/AuAg	Hydrothermal	Schottky/ Schottky	1 V	10 ² A/W	174.6	6
Au/ZnONW &Graphene/Au	CVD Hydrothermal	Schottky/ Schottky	1 V	188 A/W	104	7
Au/ZnONW/Au	Hydrothermal	Schottky/ Schottky	1 V		10-100	
Au/PEDOT:PSS/ ZnO/TiAu	Single crystal ZnO	Schottky/ Ohmic	0 V	0.3 A/W	10 ³	8
CrAu/ZnO/CrAu	Spin-coating	Ohmic/Oh mic	1 V	0.9 mA/W	3.7	
Ag/Cu/ZnO/Ag	Spin-coating	Schottky/ Ohmic	1 V	1.1 mA/W	67	This work
Ag/CuNW/ZnO/Ag	Hydrothermal Spin-coating	Schottky/ Ohmic	1 V	0.65 mA/W	160	

Table S1. Summary of the optoelectronic performance of the MSM type photodetector based on ZnO films.

H. Chen, K. Liu, X. Chen, Z. Zhang, M. Fan, M. Jiang, X. Xie, H. Zhao and D. Shen, *J. Mater. Chem. C*, 2014, **2**, 9689-9694.

- M. Zhao, X. Wang, G. Yang, M. Y. Zhou, W. J. Liu, T. W. Luo, H. F. Tan and X. R. Sun, *Appl. Surf. Sci.*, 2015, **359**, 432-434.
- M.-Y. Chuang, H.-C. Yu, Y.-K. Su, C.-H. Hsiao, T.-H. Kao, C.-S. Huang, Y.-C. Huang, J.-J. Tsai and S.-L. Wu, Sensor Actual. B: Chem., 2014, 202, 810-819.
- 4. Y. H. Liu, S. J. Young, L. W. Ji and S. J. Chang, *IEEE Trans. Electron Devices*, 2015, **62**, 2924-2927.

- 5. T.-P. Chen, F.-Y. Hung, S.-P. Chang, S.-J. Chang, Z.-S. Hu and K.-J. Chen, *Appl. Phys. Express*, 2013, **6**, 045201.
- 6. T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao and Y. J. Hsu, *Nanoscale Res. Lett.*, 2012, 7, 1-6.
- 7. Q. Xu, Q. Cheng, J. Zhong, W. Cai, Z. Zhang, Z. Wu and F. Zhang, Nanotechnology, 2014, 25, 055501.
- M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji,
 S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki,
 Appl. Phys. Lett., 2008, 93, 123309.