Self-Assembly and Mechanochromic Luminescence Switching of Trifluromethyl Substituted 1,3,4-Oxadiazole Derivatives.

Rahul M. Ongungal, ab* Aneesh P. Sivadas, N. S. Saleesh Kumar, Sajith Menon and Suresh Dasabc*

Corresponding Author

* To whom correspondence should be addressed. E-mail: sureshdas55@gmail.com

a. Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695019 Kerala, India.

b. Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST India.

c. Kerala State Council for Science Technology and Environment, Sasthra Bhavan, Pattom, Trivandrum, 695004, India. Tel: +914712540085

Supporting Information

General procedure of the synthesis of oxadiazole derivatives TFOXD1, TXOXD4, TXOXD6 and TXOXD8: 4-(trifluoromethyl) benzoyl chloride was taken in a dry round bottom flask under argon atmosphere, dry pyridine was added and stirred for 2 mts. The tetrazole derivative was dissolved in pyridine and added drop wise to the above reaction mixture with constant stirring. The reaction mixture was then refluxed at 115 °C for 12 h and poured into ice cold water and then neutralised with 2N HCI. The precipitate was washed with water, filtered and extracted with CH₂Cl₂. The compound was then concentrated and purified by using in hexane-ethyl acetate mixture to give the pure product.

Synthesis of 2-(4-(3,4-dimethoxystyryl)phenyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4oxadiazole (TFOXD1): Yield = 71%. ¹H NMR (CDCl₃, 500 MHz, TMS): δ = 8.287–8.271 (d, 2H, *J* = 8 Hz, aromatic), 8.134–8.118 (d, 2H, *J* = 8 Hz, aromatic), 7.820–7.804 (d, 2H, *J* = 8 Hz, aromatic), 7.667–7.650 (d, 2H, *J* = 8.5 Hz, aromatic), 7.218–7.186 (1H, d, *J* = 16Hz, olefinic) 7.115–7.094 (m, 2H, aromatic), 7.035–7.003 (1H, d, *J* = 16 Hz, olefinic), 6.900–6.882 (1H, d, J = 9 Hz, aromatic), 3.969 (s, 1H, –OCH₃) and 3.925 (s,1H, –OCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 65.10$, 163.26, 149.57, 149.23, 141.36, 133.39, 133.13, 131.10, 129.74, 127.41, 127.21, 126.80, 126.14 126.14, 125.34, 121.81, 120.51, 111.24, 108.90, 55.96, 55.91 ppm. MS (HRMS): m/z calcd = 452.43, found 453.14.

Synthesis of 2-(4-(3,4-dibutyloxystyryl)phenyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4oxadiazole (TFOXD4): Yield = 75% ¹H NMR (CDCl₃, 500 MHz, TMS): δ = 8.287–8.270 (d, 2H, *J* = 8.5 Hz, aromatic), 8.126–8.109 (d, 2H, *J* = 8.5 Hz, aromatic), 7.819–7.803 (d, 2H, *J* = 8 Hz, aromatic), 7.656–7.640 (d, 2H, *J* = 8.5 Hz, aromatic), 7.197–7.164 (d, 1H, *J* = 16.5 Hz, olefinic), 7.116–7.112 (d, 1H, *J* = 2 Hz, aromatic), 7.083–6.062 (m, 1H, aromatic), 7.011–6.978 (d, 1H, *J* = 16.5 Hz, olefinic), 6.894–6.877 (d, 1H, *J* = 8.5 Hz, aromatic), 4.089–4.026 (m, 4H, –OCH₂–), 1.875–1.797 (m, 4H, –CH₂–), 1.567–1.499 (m, 4H, –CH2–), 1.009–0.978 (m, 6H, –CH₃)ppm. ¹³C NMR (125 MHz, CDCl₃, TMS): δ 165.13, 163.24, 149.86, 149.34, 141.49, 133.38, 131.25, 129.73, 127.39, 127.20, 126.76, 126.14, 125.12, 124.68, 122.52, 121.70, 120.63, 113.59, 111.77, 69.14, 68.94, 31.40, 31.30, 19.27, 19.24, 13.90, 13.87 ppm. MS (HRMS): m/z calcd = 536.58, found 537.23.

Synthesis of 2-(4-(3,4-bis(hexyloxy)styryl)phenyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4oxadiazole (TFOXD6): Yield = 65% ¹H NMR (CDCl₃, 500 MHz, TMS): δ = 8.281–8.265 (d, 2H, *J* = 8 Hz, aromatic), 8.120–8.109 (d, 2H, *J* = 8 Hz, aromatic), 7.815–7.798 (d, 2H, *J* = 8.5 Hz, aromatic), 7.649–7.632 (d, 2H, *J* = 8.5 Hz, aromatic), 7.190–7.157 (d, 1H, *J* = 16.5 Hz, olefinic), 7.109–7.105 (d, 1H, *J* = 2 Hz, aromatic), 7.075–7.055 (m, 1H, aromatic), 7.002–6.970 (d, 1H, *J* = 16 Hz, olefinic), 6.885–6.869 (d, 1H, *J* = 8 Hz, aromatic), 4.0879–4.014 (m, 4H, –OCH₂–), 1.873–1.819 (m, 4H, –CH₂–), 1.514–1.484 (m, 4H, –CH₂–), 1.371–1.341 (m, 8H, –CH₂–), 0.936–0.899 (m, 6H, –CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, TMS): δ 165.11, 163.22, 149.85, 149.31, 141.49, 133.37, 131.25 130.52, 129.69, 127.20, 126.89, 126.12, 125.49, 124.68, 122.52, 121.62, 120.63, 113.53, 111.70 69.42 69.21, 31.63, 31.60, 29.32, 29.23, 25.75, 25.71, 22.63, 22.61, 14.03, 14.02 ppm. MS (HRMS): m/z calcd = 592.69, found 593.29. Synthesis of 2-(4-(3,4-bis(octyloxy)styryl)phenyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4oxadiazole (TFOXD8) : Yield = 70% ¹H NMR (CDCl₃, 500 MHz, TMS): δ = 8.282–8.265 (d, 2H, *J* = 8.5Hz, aromatic), 8.120–8.104 (d, 2H, *J* = 8Hz, aromatic), 7.815–7.799 (d, 2H, *J* = 8Hz, aromatic), 7.650–7.633 (d, 2H, *J* = 8.5Hz, aromatic), 7.191–7.158 (d, 1H, *J* = 16.5Hz, olefinic), 7.112–7.109 (d, 1H, *J* = 1.5Hz, aromatic), 7.081–6.061 (m, 1H, aromatic), 7.001–6.977 (d, 1H, *J* = 16.5Hz, olefinic), 6.889–6.872 (d, 1H, *J* = 8Hz, aromatic), 4.077–4.012 (m, 4H, –OCH₂–), 1.872–1.820 (m, 4H, –CH₂–), 1.521–1.467 (m, 4H, –CH₂–), 1.303–1.297 (m, 16H, –CH₂–), 0.905–0.880 (m, 6H, –CH3) ppm. ¹³C NMR (125 MHz, CDCl₃, TMS): δ 165.11, 163.11, 149.86, 149.32, 141.48, 133.23, 131.25, 129.70, 127.38, 127.19, 126.89, 126.75, 126.10, 125.09, 122.09, 122.52, 121.68, 120.63, 113.56, 111.74, 69.43, 69.23, 31.85, 31.84, 29.42, 29.39, 29.37, 29.31, 29.28, 26.08, 26.04, 22.68, 14.10 ppm. MS (HRMS): m/z calcd = 648.80, found 649.36.

Synthesis of 2-(4-(3,4-bis(hexyloxy)styryl)phenyl)-5-phenyl-1,3,4-oxadiazole (BOXD6): ¹H NMR (CDCl₃, 500 MHz, TMS): δ = 8.161–8.145 (d, 2H, *J* = 8 Hz, aromatic), 8.120–8.104 (d, 2H, *J* = 8 Hz, aromatic), 7.644–7.627 (d, 2H, *J* = 8.5 Hz, aromatic), 7.562–7.546 (d, 2H, *J* = 8 Hz, aromatic), 7.495–7.463 (t, 1H, aromatic), 7.185–7.153 (d, 1H, *J* = 16Hz, olefinic), 7.111–7.107 (d, 1H, *J* = 2Hz, aromatic), 7.075–6.059 (m, 1H, aromatic), 7.007–6.974 (d, 1H, J = 16.5Hz, olefinic), 6.887–6.870 (d, 1H, *J* = 8.5Hz, aromatic), 4.080–4.015 (m, 4H, –OCH₂–), 1.872–1.818 (m, 4H, –CH₂–), 1.513–1.488 (m, 4H, –CH₂–), 1.385–1.341 (m, 8H, –CH₂–), 0.935–0.898 (m, 6H, –CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 165.11, 163.22, 149.85, 149.31, 141.49, 133.37, 131.25 130.52, 129.69, 127.20, 126.89, 126.12, 125.49, 124.68, 122.52, 121.62, 120.63, 113.53, 111.70 69.42 69.21, 31.63, 31.60, 29.32, 29.23, 25.75, 25.71, 22.63, 22.61, 14.03, 14.02 ppm. MS (HRMS): m/z calcd = 524.69, found 524.29.

Fig. S1. XRD scans for oxadiazole derivatives. a) TFOXD6 at 114 °C and b) TFOXD8 at 110 °C.

Fig. S2. Dynamic moduli, G' (\blacktriangle), G'' (\bigstar), vs strain on double logarithmic scale for a gel of oxadiazole derivatives (1 × 10⁻² M) in *n*-decane at 27 °C; angular frequency, $\omega = 10$ Hz (a TFOXD1, (b) TFOXD4, (c) TFOXD6, (d) TFOXD8 and (e) BOXD6. (f) Dynamic moduli, G' (\bigstar), G'' (\bigstar), vs. angular frequency on double logarithmic scale for a gel of oxadiazole derivatives (1 × 10⁻² M) in *n*-decane at 27 °C.

Fig. S3. XRD pattern obtained from the xerogels of oxadiazole derivatives prepared from *n*-decane.

Fig. S4. Photograph showing the emission changes in TFOXD6 gel a) freshly prepared, b) aged and c) after removing the aged surface. XRD pattern of TFOXD6 in gel state d) aged sample and e) fresh sample.

Fig. S5 (a) Fluorescence spectra and (b) fluorescence lifetime decay profile of TFOXD4 in various conditions. c) Reversible fluorescence response over five consecutive cycles of grinding and heating. d) XRD pattern of TFOXD4 at various conditions. (e) The photograph of TOXD4 in various conditions.

Sample	Decane	Cyclohexane	Methylcyclo- hexane	Toluene	Xylene	
TFOXD1	G	Р	G	S	S	
TFOXD4	G	G	G	S	S	
TFOXD6	G	G	G	S	S	
TFOXD8	G	S	S	S	S	
BOXD6	G	G	G	S	S	

G – Gel; P – Precipitate; S – Solution

Sample	Solvent	λ _{max} (nm)	λ _{em} (nm)	φ _f	(ns)
	Cyclohexane	362	399, 423, 445	0.64	0.70
	Decane	362	399, 423, 445	0.65	0.71
TEONDA	Toluene	367	435	0.53	0.65
IFUXDI	Tetrahydrofuran	364	466	0.57	1.19
	Chloroform	364	449	0.44	0.72
	Acetonitrile	359	500	0.19	0.82
	Cyclohexane	360	403, 428, 451	0.68	0.72
	Decane	360	403, 428, 451	0.63	0.75
	Toluene	364	443	0.57	0.69
TFOXD4	Tetrahydrofuran	363	469	0.64	1.26
	Chloroform	363	460	0.49	0.84
	Acetonitrile	361	505	0.18	0.61
	Cyclohexane	363	404, 427, 457	0.70	0.70
	Decane	360	405, 429, 451	0.60	0.75
	Toluene	363	443	0.56	0.70
TFOXD6	Tetrahydrofuran	361	469	0.61	1.27
	Chloroform	362	460	0.46	0.88
	Acetonitrile	360	507	0.17	0.6
	Cyclohexane	362	404,429,451	0.70	0.74
	Decane	363	404, 429, 451	0.70	0.75
	Toluene	367	442	0.60	0.70
TFOXD8	Tetrahydrofuran	362	470	0.70	1.26
	Chloroform	362	460	0.44	0.85
	Acetonitrile	358	504	0.20	0.61
	Cyclohexane	360	395, 418, 442	0.68	0.61
	Decane	359	395, 418, 442	0.70	0.63
DOVES	Toluene	362	432	0.61	0.60
BOXD6	Tetrahydrofuran	360	451	0.57	0.65
	Chloroform	362	447	0.51	0.53
	Acetonitrile	355	476	0.22	0.82

Table S2. Photophysical properties of oxadiazole derivatives

Sample	Emission	Lifetime						
	max. (nm)	τ ₁	F1	τ2	F2	τ ₃	F3	
		(ns)	(%)	(ns)	(%)	(ns)	(%)	
TFOXD1	450, 463	0.7	88.6	3.5	11.4	-	-	
TFOXD4	450, 470	0.8	30.0	3.4	70.0	-	-	
TFOXD6-G	508	1.0	3.96	7.0	39.2	15.2	56.8	
TFOXD6-B	453,477	0.7	50.3	2.5	49.7	-	-	
TFOXD8	516	1.1	6.0	8.0	33.5	17.1	60.5	
BOXD6	464, 483	5.0	76.6	9.6	23.4	-	-	

Table S3. Photophysical properties of oxadiazole derivatives in gel state.

Table S4. Photophysical properties of TFOXD4, TFOXD6 and BOXD6 at various conditions.

Sample		Emission max. (nm)	Lifetime						
			τ ₁	F1	τ2	F2	τ_3	F3	
			(ns)	(%)	(ns)	(%)	(ns)	(%)	
TFOXD4	as prepared	447,472	2.3	63.34	4.6	36.66	-	-	
	After grinding	505	1.9	11.86	7	45.42	17.1	42.73	
	annealing	450,472	2	60.11	5.2	39.89	-	-	
TFOXD6	as prepared	451, 474	2.3	70.9	4.3	29.1	-	-	
	After grinding	506	1.5	16.82	6.2	47.68	15.8	35.50	
	annealing	451, 474	1.5	65.44	5.5	34.56	-	-	
BOXD6	as prepared	450, 481	3	54	8.9	46	-	-	
	After grinding	450, 481	5	76	9	24	-	-	