
S1

Supporting Information

Transition-Metal Embedded gt-C3N3 Monolayers: High-Temperature Ferromagnetism 

and High Anisotropy

Indrani Choudhuri,† Priyanka Garg,† Biswarup Pathak,†,#,*

†Discipline of Chemistry and #Discipline of Metallurgy Engineering and Material Science, 
Indian Institute of Technology (IIT) Indore, Indore 453552, India

Email: biswarup@iiti.ac.in 

Contents:

Figure S1: (a) Optimized structure of gt-C3N3 (top and side views) and (b) charge density of 

gt-C3N3 (Isosurface value is 0.18 e.Å-3). 

Figure S2: Optimized structures (top and side views) of TM@gt-C3N3 (TM = Sc to Cu) 

structures. 

Table S1: Bond lengths and net effective charges calculated from Bader Charge analysis of 

gt-C3N3 and TM@gt-C3N3 (See Figure 1 in the manuscript for atom numbering)

Text S1. Formation Energy (Ef), Binding Energy (EB) and Cohesive Energy (Ecoh) 
calculations.

Figure S3: Total electron density (Isosurface value: 0.18 e.Å-3) and electrostatic potentials 

(ESP) plots (Isosurface value: 0.03 e.Å-3) of TM@gt-C3N3 (Sc to Cu). The blue and red 

colours denote less and more electron dense area in the electrostatic potential surface.     

Table 2: Binding energy (EB/TM), formation energy (EF), cohesive energy of TM bulk 

(ECoh/atom) and phonon frequency of TM@gt-C3N3 systems. (TM = Sc to Cu)

Figure S4: Phonon band structures of TM@gt-C3N3 (TM = Sc to Cu) 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2016

mailto:biswarup@iiti.ac.in


S2

Figure S5: Total energy fluctuation during AIMD simulations of Cr@gt-C3N3, Mn@gt-C3N3 

and Fe@gt-C3N3 systems at 400 and 500 K. The structures represent the snapshot at 10 ps for 

each simulation.

Figure S6: Strain energy of (a) Cr@gt-C3N3 (b) Mn@gt-C3N3 and (c) Fe@gt-C3N3 under in-

plane uniaxial and equi-biaxial strains. 

Table S3: Calculated Young’s Modulus and Poisson’s ratio of TM@gt-C3N3 by applying 

uniaxial and equi-biaxial strain.

Figure S7. Energy diagram of d-orbital splitting of different TM@C3N3 systems.

Figure S8: (a) TDOS and pDOS plot of (a) Cr@gt-C3N3, (b) Mn@gt-C3N3 and (c) Fe@gt-
C3N3 (Fermi level is shifted to zero and indicated by black dashed line) 

Table S4: Exchange energy (Eex) and Curie temperature value of TM@gt-C3N3 system.

Figure S9. Band structures of Mn@gt-C3N3 by applying 1%, 5% and 10% (a) uniaxial and 

(b) biaxial tensile strain. The Fermi level is set to zero and indicated by blue dashed line.

Figure S10. Band structures of Fe@gt-C3N3 by applying 1%, 5% and 10% (a) uniaxial and 

(b) biaxial tensile strain. The Fermi level is set to zero and indicated by blue dashed line

Text S2. Calculation of Magnetic Anisotropy Energy (MAE)

Text S3. Mean Field Theory (MFT) and Monte Carlo Simulation.

References



S3

Figure S1: (a) Optimized structure of gt-C3N3 (top and side views) and (b) charge density of 

gt-C3N3 (Isosurface value is 0.18 e.Å-3). 
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Figure S2: Optimized structures (top and side views) of TM@gt-C3N3 (TM = Sc to Cu) 

structures. 

Table S1: Bond lengths and net effective charges calculated from Bader Charge analysis of 

gt-C3N3 and TM@gt-C3N3 (See Figure 1 in the manuscript for atom numbering)

Net Effective Charge Compound Bond length (Å)
C N TM

gt-C3N3 C2-N1 = 1.33
C2-N2 = 1.39
C1-N1 = 1.27
C1-N2 = 1.41

C1= +0.98
C2= +1.57

N1=-1.26
N2=-1.01

Sc@gt-C3N3 Sc-N= 2.12
Sc-C= 2.15

C2-N2 = 1.44
C2-N1 = 1.35 
C1-N1 = 1.36 
C1-N2 = 1.43

C1= +0.55
C2 = +1.36

N1= -1.31
N2= -1.12

Sc = +1.44

Ti@gt-C3N3 Ti-N= 2.05
Ti-C= 2.06

C2-N2 = 1.42
C2-N1 = 1.35
C1-N1 = 1.36
C1-N2 = 1.41

C1= +0.48
C2 = +1.39

N1= -1.30
N2= -1.11

Ti = +1.33

V@gt-C3N3 V-N= 2.01
V-C= 1.99

C2-N2 = 1.43
C2-N1 = 1.35 
C1-N1 = 1.36
C1-N2 = 1.42

C1= +0.53
C2 = +1.39

N1= -1.29
N2= -1.11

V = +1.24

Cr@gt-C3N3 Cr-N= 1.97
Cr-C= 1.94

C2-N2 = 1.44
C2-N1 = 1.35
C1-N1 = 1.34
C1-N2 = 1.42

C1= +0.06
C2 = +1.97

N1= -1.32
N2= -1.07

Cr = +1.62

Mn@gt-C3N3 Mn-N= 1.94
Mn-C= 1.90

C2-N2 = 1.43
C2-N1 = 1.36
C1-N1 = 1.35
C1-N2 = 1.42

C1= +0.06
C2= +1.99

N1= -1.32
N2= -1.15

Mn =+1.68

Fe@gt-C3N3 Fe-N= 1.92
Fe-C= 1.84

C2-N2 = 1.41
C2-N1 = 1.36
C1-N1 = 1.36
C1-N2 = 1.42

C1= +0.07
C2= +2.00

N1= -1.27
N2= -1.17

Fe = +1.57

Co@gt-C3N3 Co-N= 1.90
Co-C= 1.79

C2-N2 = 1.39
C2-N1 = 1.35
C1-N1 = 1.35
C1-N2 = 1.42

C1= +0.72
C2= +1.50

N1= -1.23
N2= -1.19

Co = +0.66

Ni@gt-C3N3 Ni-N= 1.89
Ni-C= 1.83

C2-N2 = 1.39
C2-N1 = 1.35
C1-N1 = 1.34
C1-N2 = 1.40

C1= +0.79
C2= +1.51

N1= -1.25
N2= -1.21

Ni = +0.62

Cu@gt-C3N3 Cr-N= 1.93
Cr-C= 1.89

C2-N2 = 1.41
C2-N1 = 1.35

C1= +0.78
C2= +1.46

N1= -1.27
N2= -1.20

Cu= +0.72
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C1-N1 = 1.33
C1-N2 = 1.40

Text S1. Formation Energy (Ef), Binding Energy (EB) and Cohesive Energy (Ecoh) 
Calculations:

The N-vacancy formation energy is calculated for g-C3N3 system with the help of the 

following equation.

EN-vacancy = [Egt-C3N4 – (Egt-C3N3 + μN)] (1)

Here, ETM@g-C3N4 is the total energy of TM@gt-C3N4, Eg-C3N3 is the total energy of gt-C3N3 

sheet, and μN represents the chemical potential of nitrogen (N). μN is calculated from the total 

energy of an isolated N2 molecule. 

The formation energy (Ef) is calculated for each TM embedding in the pore of gt-C3N3 

(Figure 1) using the following equation:

Ef = [ETM@g-C3N3 – (Egt-C3N3 + μTM)] (2)

where ETM@g-C3N3 is the total energy of TM@gt-C3N3, Eg-C3N3 is the total energy of gt-C3N3 

sheet, and μTM represents the chemical potential of TM in their respective bulk structure. The 

chemical potentials of Cr (μCr), Mn (μMn), and Fe (μFe) are calculated from their most stable 

crystals such as Cr in bcc,1 Mn in cubic,2 and Fe in bcc,3 respectively.

We have also calculated the binding energy (EB) of TM in the pore of g-C3N3 using the 

following equation:

EB = Egt-C3N3+TM – (Egt-C3N3 +ETM) (3)

where, ETM represents the total energy of the isolated atom.

The cohesive energy of a solid is the energy required to dissociate the solid into their isolated 

atomic species. It is calculated by using the following equation:

(4)Ecoh = ESolid
  – 𝞢 EA

isolated
A
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Figure S3: Total electron density (Isosurface value: 0.18 e.Å-3) and electrostatic potentials 

(ESP) plots (Isosurface value: 0.03 e.Å-3) of TM@gt-C3N3 (Sc to Cu). The blue and red 

colours denote less and more electron dense area in the electrostatic potential surface.     
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Table S2: Binding energy (EB/TM), formation energy (EF), cohesive energy of TM bulk 

(ECoh/atom) and phonon frequency of TM@gt-C3N3 systems. (TM = Sc to Cu)

Imaginary 
Frequency (i)

Systems
(TM@gt-C3N3)

EB /TM 
(eV)

EF (eV) ECoh (eV)

THz cm-1

Sc -3.81 3.22 -4.11 1.61 53.76 

Ti -3.72 4.08 -5.02 1.73 57.80 

V -5.95 2.60 -5.56 0.79 26.31 

Cr -9.50 -1.81 -4.27 0.005 0.16 

Mn -8.26 -1.32 -3.12 0.012 0.42 

Fe -8.10 -1.17 -4.46 0.013 0.45 

Co -6.81 0.94 -4.62 1.36 45.45 

Ni -5.22 1.07 -4.67 0.96 32.07 

Cu -3.73 1.04 -3.75 0.50 16.69 
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Figure S4: Phonon band structures of TM@gt-C3N3 (TM = Sc to Cu) 
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Figure S5: Total energy fluctuation during AIMD simulations of Cr@gt-C3N3, Mn@gt-C3N3 

and Fe@gt-C3N3 systems at 400 and 500 K. The structures represent the snapshot at 10 ps for 

each simulation.

Figure S6: Strain energy of (a) Cr@gt-C3N3 (b) Mn@gt-C3N3 and (c) Fe@gt-C3N3 under in-

plane uniaxial and equi-biaxial strains. 

Table S3: Calculated Young’s Modulus and Poisson’s ratio of TM@gt-C3N3 by applying 

uniaxial and equi-biaxial strain.

Compound Young’s Modulus 

(GPa)

Poisson’s Ratio Elastic constants 

(GPa)

Cr@gt-C3N3 124.97  0.49 C11 =166.32
C12 = 82.92 
C44 = 41.70

Mn@gt-C3N3 113.26 0.50 C11 =153.12
C12 = 78.12 
C44 = 37.50

Fe@gt-C3N3            114.98 0.49 C11 =153.01
C12 = 76.28 
C44 = 38.20
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Figure S7. d-orbital splitting energy diagram for Cr, Mn and Fe@gt-C3N3 systems. 

Figure S8: (a) TDOS and pDOS plot of (a) Cr@gt-C3N3, (b) Mn@gt-C3N3 and (c) Fe@gt-
C3N3 (Fermi level is shifted to zero and indicated by a black dashed line).

Table S4: Exchange energy (Eex) and Curie temperature value of TM@gt-C3N3 system. 
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Compound

Magnetic 

Moment/TM

(μB)

Exchange energy

(meV)/TM

[Eex = EFM -EAFM ]

Energy Difference

(meV)/TM

(Ediff = EFM -ENSP)

Curie 

Temperature

(TC) in (K)

MAE in 

(meV)/TM

(Magnetic 

Anisotropy 

Energy)

Cr@gt-C3N3 3.69 -312.99 -53.79 338* 
(205)4(252)5

4.02# 
(2.40)6(2.23)7

Mn@gt-C3N3 4.75 -307.74 -46.13 328 2.44 

Fe@gt-C3N3 3.85 -303.55 -75.21 326 1.19 

*Cr@gt-C3N3 shows higher Curie tempareture compare to first row transition metal 
incorporated carbon nitride systems such as V-g-C3N4 

4 and Cu-gt-C3N4.5 In fact, Cr@gt-
C3N3 has higher MAE compared to the previously reported Fe embedded graphyne6 and Co 
nanowaires systems.7 The previous studies on carbon nitride based systems did not report 
MAE and thus we could not comapare with carbon nitride based systems.

Figure S9. Band structures of Mn@gt-C3N3 by applying 1%, 5% and 10% (a) uniaxial and 

(b) biaxial tensile strain. The Fermi level is set to zero and indicated by a blue dashed line.
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Figure S10. Band structures of Fe@gt-C3N3 by applying 1%, 5% and 10% (a) uniaxial and 

(b) biaxial tensile strain. The Fermi level is set to zero and indicated by blue dashed line

Text S2. Calculation of Magnetic Anisotropy Energy (MAE)

The magnetic anisotropy energy (MAE) is calculated by applying the torque approach.8-9 

Non-collinear self-consistent calculations (including spin orbit coupling) are performed in the 

z, y and x axis magnetization directions, respectively. MAE originates from the perpendicular 

and in plane contribution of spin orbit coupling (SOC), which can be expressed in terms of 

angular momentum operators Lx, Ly or Lz. So the contribution of different spins (up ‘↑↑’ and 

down ‘↓↓’) can be expressed by the second order perturbation equation.10 

𝑀𝐴𝐸 = 𝜉2∑
𝑜,𝑢

│ < 𝑜│𝐿𝑍│𝑢 > │2 ‒  │ < 𝑜│𝐿𝑋│𝑢 > │2

𝐸𝑢 ‒ 𝐸𝑜

Here, o and u represent the occupied and unoccupied electronic states, respectively. The Eo 

and Eu in the denominator are their respective band energies. LZ and LX are the angular 

momentum operators along Z and X axis, and ξ denotes the strength of the SOC. So, a 
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potential with good MAE for practical application should hold a high value of ξ.  Then, the 

MAE is calculated using the following equation: 

MAE = ES0 – ES1 (5)

Where ES0 is the energy of the materials without employing any magnetic axis and ES1 is the 

energy in presence of an easy axis.  Total energies are converged to a precision of 10-6 eV in 

MAE calculations.

Text S3.1 Mean Field Theory (MFT):

We have taken the MFT approach to calculate the Curie tempareture for the two dimentional 

TM@gt-C3N4 systems. This method has been previously used by Li et al.11 for the Curie 

tempareture calculation for Mn-phthalocyanine (MnPc) system.  The main idea behind MFT 

method is to replace all interactions to any one body with an average or effective interaction.8 

It reduces any multi-body problem into an effective one-body problem. The detailed partition 

function can be written as follows, 

Z =  (6)
∑

𝑚 =‒ 𝑀, ‒ 𝑀 + 2,…..𝑀 ‒ 2, 𝑀 

𝑒
𝛾𝐽'𝑚 < 𝑀 > /𝑘𝐵𝑇

Here, ‘J՜’ is the exchange parameter, ‘γ’ is the coordination number, ‘m’ is the ensemble-

average magnetic moment, and ‘M’ is the calculated magnetic moment of TM.

Thus, the average spin of each magnet becomes,

<m> = (7)

1
𝑍 ∑

𝑚 =‒ 𝑀, ‒ 𝑀 + 2,…..𝑀 ‒ 2, 𝑀 

𝑚 × 𝑒
𝛾𝐽'𝑚 < 𝑀 > /𝑘𝐵𝑇

Now, if we assume that, P =  , then the equation 5 becomes,

𝛾𝐽'

𝑘𝐵𝑇
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The above equation can be easily deducible when the parameter ‘P’ varies along with the 

static solution <m>. At the critical point, 

P = Pc =  (8)

𝛾𝐽'

𝑘𝐵𝑇𝑐

At this critical point, the phase transition of the system between ferromagnetic to 

paramagnetic occurs. This critical point is known as Curie temperature.

3.2 Monte Carlo Simulations:

Monte Carlo simulations involve generating a subset of configurations or samples, chosen 

using a random algorithm from a configuration space, according to a probability distribution 

or weight function. Observables are then computed as averages over the samples.12

One sample or configuration of the magnet is a particular assignment of spin values, say

s1 = +1; s2 = -1; s3 = +1; ……………… ; sNs = +1 (9)

in which each spin is set “up” or “down”. According to statistical mechanics, the average 

value of an observable is got by weighting each configuration with the Boltzmann factor. For 

example, the average magnetization at some fixed temperature T is given by,

<M> = (10)

∑
𝐶𝑜𝑛𝑓𝑖𝑔

𝑀𝑒
‒ 𝐸/𝑘𝐵𝑇

∑
𝐶𝑜𝑛𝑓𝑖𝑔

𝑒
‒ 𝐸/𝑘𝐵𝑇

At the Curie temperature (Tc) we expect a marked fluctuation in the magnetic moment (M).
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