Supporting information to Luminescence enhancement of self-assembled Y₂O₃-Eu³⁺ thin film-coated porous alumina membrane

N. Abdellaoui¹, A. Pereira¹, T. Kandri¹, E. Drouard², M. Novotny³, B. Moine¹, A. Pillonnet¹

- ¹ Institut Lumière Matière Université de Lyon, Université Lyon 1, CNRS UMR5306, Villeurbanne F-69622, France
- ² Institut des Nanotechnologies de Lyon Université de Lyon, UMR 5270 CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, F-69134 Ecully cedex, France
- ³ Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic

1. Procedure to estimate the structural parameters of Y₂O₃:Eu³⁺ films deposited on PAMs

The SEM images were analyzed using ImageJ software to determine the average pore diameter (*d*), the average interpore distance (*p*) and the porosity (P) of $Y_2O_3:Eu^{3+}$ films deposited on PAMs. From the SEM image (figure SI.1a), the intensity distribution is plotted as a function of the distance allowing us to determine the interpore distance (figure SI-1b). The pore diameter distribution (figure SI-1c) as well as the porosity was determined after image flattening and cleaning using filters and various tools available in ImageJ.

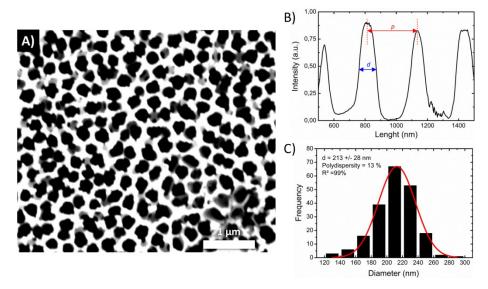
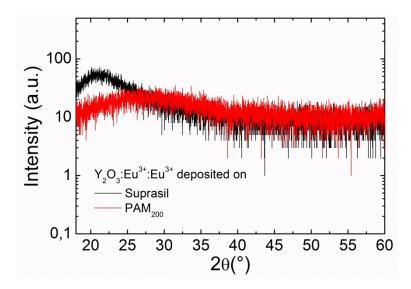
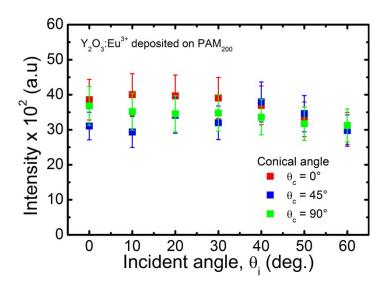



Figure SI-1 - SEM image of a 60-nm thick Y_2O_3 :Eu³⁺ film deposited on PAM₂₀₀ and analyzed using ImageJ software.


2. X-ray diffraction measurements

X-ray characterizations were performed using a Rigaku SmartLab diffractometer with a $CuK_{\alpha 1}$ radiation ($\lambda = 1.5406$ Å) in the θ -2 θ Bragg-Brentano configuration. Diffractograms were carried out with a 0.01° step size and a scan speed of 1°/min. According to the diffractograms shown below, both deposited films appear amorphous, as no diffraction lines are detected.

Figure SI-2 - X-ray diffractograms of annealed Y_2O_3 :Eu³⁺ thin film (60 nm-thick) deposited on Suprasil and PAM₂₀₀.

3. Effect of the structure orientation (incident angle as well as conical angle) on the emission spectra of Y_2O_3 : Eu³⁺ deposited on PAM₂₀₀.

Figure SI-3 - Emission intensity as a function of the incident angle (θ_i) as well as the conical angle (θ_c) for Y₂O₃:Eu³⁺ deposited on PAM₂₀₀. The measurements were performed in an integrating sphere.

4. Emission spectra of the porous alumina membrane PAM_{200} .

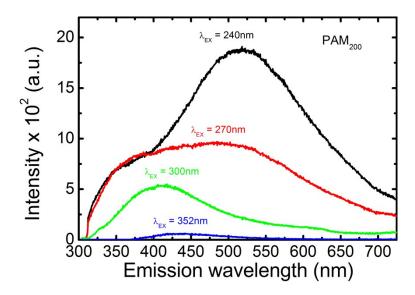


Figure SI-4 - Emission spectra of PAM₂₀₀ under various excitation wavelengths.