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Fig. S1. FE-SEM images of as-produced NGs. G, and NG, denote graphene and nitrogen-doped graphene,
respectively, with x representing the electrolyte used in each process. These images reveal that the as-

made graphene nanosheets had sharp edges and folded structures after exfoliation.
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Fig. S2. Bright-field TEM images and EDS elemental mapping images of each NG produced through the



cathodic plasma process when using different electrolytes. The bright-field TEM images reveal that the
samples remained few micrometers long and wide, with sharp edges. In addition to carbon atoms, oxygen
and nitrogen atoms were both detected in the EDS elemental mapping images obtained through STEM
measurements. The nitrogen atom distributions were quite normal and fitted the shapes of the chosen

samples, suggesting that the cathodic plasma process did indeed dope nitrogen atoms into the graphene.
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Fig. S3. XPS survey spectra of graphite rod and nitrogen-doped samples. In addition to successes using
ammonia- and urea- containing aqueous electrolytes, nitrogen-binding signals in XPS measurements were
also evident when using NaNO3;, NaNO,, and HNO; as aqueous electrolytes, suggesting that nitrate and
nitrite can also serve as dopants for NGs.

XPS (at.%) EA (wt%)
materials C (o) N C H (0] N
Graphite rod 99.98 0.02 - 99.97 0.01 0.02 -
GNaoH 95.88 4.12 - 96.01 0.31 3.68 -
NGNaoH+NH40H 91.07 8.22 0.71 90.05 1.23 8.10 0.62
NGnaoH+Urea 88.39 11.01 0.60 91.86 1.01 6.59 0.54
NGnanos 88.84 10.47 0.69 89.98 1.13 8.39 0.50
NGnano:2 88.13 11.20 0.67 89.81 1.13 8.58 0.48
NGunos 89.49 9.70 0.81 90.49 1.05 7.74 0.72

Table S1. Surface and bulk elemental compositions of graphite rod and NG samples prepared using various
electrolytes.
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Fig. S4. (a) High-resolution N 1s XPS spectra with deconvoluted peak assignments and (b) contents of
various nitrogen-bonding states for samples produced using various electrolytes. The N 1s spectra of the
graphene samples doped using the various electrolytes were all deconvoluted by three Gaussian fittings.
Interestingly, for NGynos a signal for pyridinic-N oxide was detected at 403.8 eV, possibly because of the
stronger oxidizing ability of HNOs.
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Fig. S5. Raman spectra revealing the D-, G-, and 2D-bands and /p/I; ratios of graphite rod and NG samples
produced using various electrolytes. After the cathodic plasma process, the defect level in each sample

increased dramatically upon decreasing the number of graphene layers.
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Fig. S6. Nitrogen adsorption/desorption curves for measurement of BET surface areas; insets: BJH pore size

distributions of the graphite rod and the samples prepared through nitrogen-doping. The specific surface

areas of the NGs could be tuned by varying the electrolyte.
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Scheme S1. When urea dissolves into water, radicalized ammonia molecules can be generated which serve
as the precursor of nitrogen containing radicals® such as NH3*, NH,*, NH*. After reacting with radicalized
graphene and experiencing structural rearrangement? ,nitrogen-doped graphene with pyrrolic, pyridinic
and graphitic bonding configuration of nitrogen atom was produced. On the other hand, when we use
nitric acid or sodium nitrate/nitride as electrolyte, nitrogen-doped graphene can also be produced through
cathodic plasma electrolysis. Here we propose a possible mechanism of nitrogen-doping process for the
use of nitrate or nitrite anion as nitrogen-containing resources. When nitrate/nitrite anion experience
cathodic plasma, relatively high temperature and electrical discharge can break N-O bonds? and produce
radicals such as NO,*, NO* which possibly react with H* or OH* to form NHs®, NH,*, NH* or NHO* radicals
that produce nitrogen-doped graphene in the same way. Due to the stronger oxidation ability of nitric acid,

a small portion of pyrridinic-N oxide was detected via XPS measurement.
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