Third-order nonlinear optical response and ultrafast dynamics of tetraoxa[22]porphyrin(2.1.2.1)s[†]

Krishnandu Makhal,^b Shafali Arora,^a Paramjit Kaur,^a Debabrata Goswami^{b,*} and Kamaljit Singh^{a,*1}

^aDepartment of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar- 143005, India

^bDepartment of Chemistry, Indian Institute of Technology, Kanpur -208016, India *e-mail: <u>kamaljit.chem@gndu.ac.in</u>; <u>dgoswami@iitk.ac.in</u>

S. No.	Content	Page number
1.	Experimental set up for z-scan measurements (Fig. S1) and the	S1-S3
	related theory.	
2.	Copies of ¹ H NMR, ¹³ C NMR and HR mass Spectra of 5 and	S4-S11
	intermediates (Fig S2-S12).	
3.	The steady state absorption spectra (blue line) of compounds 4-6	S12
	recorded in DCM along with the theoretical vertical excitation	
	energies (red bar) obtained from TD-DFT calculations carried out at	
	the B3LYP/6-311G basis set (Fig. S13).	
4.	Calculation of NICS of 5 (Fig. S14-16).	S13-S15
5.	Molecular structures (optimized at Gaussian 09 B3LYP/6-311G (d))	S16
	and their molecular dimensions (Fig. S17).	
6.	Energy minimized structure of 5 by DFT method at B3LYP/6-	S17
	311G(d) level using the Gaussian09 program (Top and side view)	
	(Fig. S18).	
7.	Fluorescence lifetimes of three compounds measured through	S18
	TCSPC with IRF of 80 ps (Fig. S19).	
8.	Selected TD-DFT (B3LYP/6-311G (d)) calculated energies, oscillator	S19-S20
	strengths and compositions of the major electronic transitions of	
	4-6 (Tables S1-S3).	
9.	Coordinates for the optimized structure 5 (Table S4).	S21-S22
10.	Selected Frontier MOs of 4-6 calculated at the B3LYP/6-311G(d)	S23-S25
	level (Fig. S20-S22).	
11.	Average Polarizability of 4-6 using Gaussian 09 program (Table S5).	S26
12.	Energy level diagram (Fig. S23).	S27
13.	Plot of β versus fluence I ₀ (Fig. S24).	S28
14.	Femtosecond transient absorption spectra of 6 (Fig. S25).	S29
15.	Complete reference [17].	S30

⁺ The first two authors contributed equally

Figure S1: Experimental setup for Z-scan for measurements.

Theory related to the nonlinear phenomenon used in the manuscript:

The nonlinear refraction coefficient γ is defined as:

 $n = n_0 + \gamma I_0$

Where n_0 is the linear index of refraction, I_0 is the on axis intensity at the beam waist. Similarly the nonlinear absorption coefficient is defined by

 $\alpha = \alpha_0 + \beta I_0$ (2)

Where α_0 is the linear absorption coefficient. Under Open aperture condition, the normalized transmittance is given by^{1,2} a

$$T(z) = 1 - \frac{q_0}{2\sqrt{2}} \text{ for } |q_0| < 1$$

$$q_0 = \frac{\beta I_0 (1 - e^{-\alpha_0 L})}{(1 + \frac{z^2}{z_0^2})\alpha_0} = \frac{\beta I_0 L_{eff}}{(1 + \frac{z^2}{z_0^2})\alpha_0}$$
where the free factor q0 is defined as
$$q_0 = \frac{\beta I_0 (1 - e^{-\alpha_0 L})}{(1 + \frac{z^2}{z_0^2})\alpha_0} = \frac{\beta I_0 L_{eff}}{(1 + \frac{z^2}{z_0^2})\alpha_0}$$

where the free factor q0 is defined as

where α_0 is the linear absorption coefficient, L is the thickness of the sample, I₀ is the intensity at the focus (z=0) and z_0 is the Rayleigh range. The OA Z-scan experiment determines the magnitude of nonlinear absorption coefficient β which is related to imaginary part of $\chi(3)$. The change in beam intensity after transmitting through the sample can be written as^{1,2}

$$\frac{dI}{dz} = -\alpha_0 I - \sigma_{ex} N(t) I \tag{4}$$

Where z is the position of the sample, I is the intensity, N is the density of the molecule in the excited state and $\alpha 0$ is the linear absorption coefficient. Number density N(t) of the molecules appears a result of nonlinear absorption process in the excited triplet state to higher triplet state as the ns pulse width $(\tau) > ISC$ and the intensity dependence can be expressed as^{3,4} $\alpha_0 I$

$$\frac{dN}{dt} = \frac{\alpha_0 I}{hv}$$

(5)

(1)

where v is the frequency of laser. Combining equations 3 and 4 gives

$$\frac{dI}{dz} = -\alpha_0 I - \frac{\sigma_{ex} \alpha_0 I}{h_{\nu}} \int_{-\infty}^{\infty} I(t) dt$$
(6)

Solving above equation for fluence and integrating over the beam gives us the normalized transmittance for OA as²³

$$T = \frac{ln(2)(1 + \frac{q_0}{1 + x^2})}{(\frac{q_0}{1 + x^2})}$$
(7)

Where $x=z/z_0$, z is the distance of the sample from the focus, z_0 is the Rayleigh range and q_0 is given by

$$q_0 = \frac{\sigma_{ex} \alpha_0 F_0 L_{eff}}{2h_V} \tag{8}$$

Where F_0 is the on axis fluence at the focus which is related to incident input energy over the sample. Finally the ground state

absorption cross section σ_{gr} is calculated using the relation

$$\sigma_{gr} = \frac{\alpha_0}{N_A C}$$

with N_A being Avogadro's number and C is concentration used in mol/lit.

S2

Nonlinear refractive index γ was obtained by fitting the CA Z-scan traces obtained experimentally to the equation;

$$T = 1 + \frac{4x}{(x^2 + 9)(x^2 + 1)} \Delta \Phi - \frac{2(x^2 + 9)}{(x^2 + 9)(x^2 + 1)} \Delta \Psi$$
(10)

where $\Delta \Phi = k\gamma I_0 L_{eff}$ is nonlinear phase shift due to nonlinear refraction and $\Delta \Psi = \beta I_0 L_{eff}/2$ is nonlinear phase shift due to nonlinear absorption, $x=z/z_0$ represents the dimensionless relative position from the beam waist, z_0 being the Rayleigh range of the focused Gaussian beam, k is the wave vector, γ is nonlinear refractive coefficient, β is nonlinear absorption coefficient, I_0 is the on axis power density at the beam waist and L_{eff} is the effective sample length considering linear attenuation. The real and imaginary parts of third order nonlinear susceptibility $\chi^{(3)}$ are related to nonlinear refraction and absorption coefficients as:

$$\chi^{3} = \chi_{Re}^{(3)} + \chi_{Im}^{(3)}$$

with $\chi_{Re}^{(3)} = 2n_0\varepsilon_0c_\gamma$ and $\chi_{Im}^{(3)} = n_0^2\varepsilon_0c\beta/k$ where c is the velocity of light in vacuum and ε_0 is permittivity of free space. Introducing ρ which is the ratio of the imaginary to real part of third order nonlinear susceptibility $\chi^{(3)}$ as:

$$\rho = \frac{\chi_{Im}^{(3)}}{\chi_{Re}^{(3)}} = \frac{\beta}{2_{\kappa\gamma}}$$
(12)

and considering equations 11 and 12 we have:

 $\Delta \Psi = \rho \Delta \Phi$

(13)

(11)

(9)

Invoking equation 13 into equation 10 yields the normalized transmittance T in CA Zscan which we have used for theoretical fitting of our CA data and is represented as: $2(-\rho x^2 + 2x - 3\rho)$

$$T = 1 + \frac{2(-px + 2x - 5p)}{(x^2 + 9)(x^2 + 1)} \Delta\Phi$$
(14)

References:

- F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D, Philips and J. A. Lacey, *Chem. Phys. Lett.*, 1997, 267, 229-233.
 F. Z. Henari, *J. Opt. A: Pure Appl. Opt.* 2001, 3, 188-190.
 P. Poornesh, G. Umesh, P. K. Hegde, M.G. Manjunatha, K. B. Manjunatha and A. V. Adhikari, *Appl. Phys. B*, 2009, 97, 117-124.
 P. Poornesh, P. K. Hegde, G. Umesh, M.G. Manjunatha, K. B. Manjunatha and A. V. Adhikari, *Opt. Laser Tech.* 2010, 42, 230-236. 1
- 23
- 4

Figure S2: ¹H NMR spectrum (in CDCl₃) of 4-Bromophenyl-di(furan-2-yl)methane.

Figure S3: ¹H NMR spectrum (in CDCl₃) of 4-Bromophenyl-di(5-formylfuran-2-yl)methane.

Figure S4: ¹H NMR spectrum (in CDCl₃) of 5,16-Di-(4-bromo)phenyl-5,16-dihydrotetraoxa[22] porphyrin(2.1.2.1).

Figure S5: ¹H NMR spectrum (in DMSO- d_6) of **5.**

Figure S6: ¹³C NMR spectrum (in CDCl₃) of 4-Bromophenyl-di(furan-2-yl)methane.

Figure S7: ¹³C NMR spectrum (in CDCl₃) of 4-Bromophenyl-di(5-formylfuran-2-yl)methane.

Figure S8: ¹³C NMR spectrum (in CDCl₃) of 5,16-Di-(4-bromo)phenyldihydrotetraoxa[22] porphyrin(2.1.2.1).

Figure S9: HRMS (High Resolution mass spectra) of 4-Bromophenyl-di(furan-2-yl)methane.

S9

Figure S10: HRMS (High Resolution mass spectra) of 4-Bromophenyl-di(5-formylfuran-2-yl)methane.

Figure S11: HRMS (High Resolution mass spectra) of 5,16-Di-(4-bromo)phenyldihydrotetraoxa[22] porphyrin(2.1.2.1).

Figure S12: HRMS (High Resolution mass spectra) of 5.

Figure S13: The steady state absorption spectra (blue line) of compounds **4-6** recorded in DCM along with the theoretical vertical excitation energies (red bar) obtained from TD-DFT calculations carried out at the B3LYP/6-311G basis set

Figure S14: The ghost (Bq) atoms were placed at the centre of the molecule (in purple) at successive distances of 0.5Å to probe the aromaticity. The negative NICS values clearly display the aromaticity of **5**. At centre NICS is maximum and it goes on decreasing as we move farther from the centre.

Figure S15: Calculation of NICS values for all individual rings in **5**. The calculation was performed by placing ghost atoms at 1Å interval. The NICS vs r (distance from center) graphs are shown on next page.

p-bromophenyl 1

Figure S16: As shown above a set of two furan rings of **5** (attached to one of the trans double bond) are showing a dip at 1Å in the calculated NICS values. The behaviour of two furan rings is also different from an isolated furan ring (which shows no dip at 1Å). p-Bromophenyl rings are showing normal behaviour as bromobenzene but with decreased NICS values.

Figure S17: Molecular structures (optimized at Gaussian 09 B3LYP/6-311G (d)) and their molecular dimensions.

Figure S18: Energy minimized structure of **5** by DFT method at B3LYP/6-311G(d) level using the Gaussian09 program (Top and side view).

Figure S19: Fluorescence lifetimes of three compounds measured through TCSPC with IRF of 80 ps.

Table S1: Selected TD-DFT (B3LYP/6-311G (d)) calculated energies, oscillator strengths andcompositions of the major electronic transitions of 4

Energy (cm ⁻¹) λ (nm)		Osc. Strength(f)	Major contributions		
14478.45	690.68	0.7216	HOMO \rightarrow LUMO (92%)		
15307.59	653.27	0.0199	H-1 \rightarrow LUMO (52%), HOMO \rightarrow L+1(46%)		
23748.98	421.06	0.6697	H-1 \longrightarrow LUMO (49%), HOMO \longrightarrow L+1 (54%)		
24192.59	413.34	0	$HOMO \rightarrow L+2 (81\%)$		
26740.49	373.97	1.5637	$H-1 \longrightarrow L+1 (53\%), HOMO \longrightarrow L+3 (40\%)$		
27997.91	357.17	0	HOMO → L+4 (97%)		
28010.81	357	0.0026	$HOMO \longrightarrow L+5 (98\%)$		
28176.96	354.90	0	H-2 \longrightarrow LUMO (76%)		
28268.91	353.75	0.5247	$HOMO \longrightarrow L+3 (52\%), H-1 \longrightarrow L+1 (29\%)$		
29169.83	342.82	0	$HOMO \longrightarrow L+6 (93\%)$		
29447.29	339.59	0	$H-3 \longrightarrow LUMO (82\%)$		
30199	331.14	0	$H-1 \longrightarrow L+2 (83\%)$		
32175.05	310.80	0.0101	H-4→LUMO (84%)		
32564.62	307.08	0.0030	H-5→LUMO (98%)		
32633.18	306.43	0	$\text{H-6} \longrightarrow \text{LUMO} (97\%)$		

Table S2: Selected TD-DFT (B3LYP/6-311G (d)) calculated energies, oscillator strengths and compositions of the major electronic transitions of **5**

Energy (cm ⁻¹)	λ(nm)	Osc. Strength (f)	Major Contributions
15244	656	0.0217	H-1 \longrightarrow LUMO (56%), HOMO \longrightarrow L+1 (21%)
15967.35	626.29	0.4615	HOMO \longrightarrow LUMO (80%)
24752.34	404	0.8751	HOMO \longrightarrow L+1 (55%), H-1 \longrightarrow LUMO(42%)
26103.31	383.09	2.4108	$H-1 \longrightarrow L+1 (64\%), HOMO \longrightarrow LUMO (17\%)$
26236.40	381.15	0	HOMO→L+2 (82%)
28456.84	351.41	0	HOMO \longrightarrow L+4 (99%)
28480.23	351.12	0.0059	HOMO→L+5 (99%)
28589.92	349.78	0.1451	$HOMO \longrightarrow L+3 (81\%)$
28901.25	346	0	H-2 \longrightarrow LUMO (60%), HOMO \longrightarrow L+6(25%)
29531.17	338.63	0	$H-1 \longrightarrow L+2 (90\%)$
29976.39	333.60	0	HOMO \longrightarrow L+6 (67%), H-2 \longrightarrow LUMO (19%)
31072.49	321.83	0	HOMO \rightarrow L+7 (62%), H-4 \rightarrow LUMO (29%)
31137.82	321.16	0.0011	HOMO \longrightarrow L+8 (99%)
			. /

S18

31203.96	320.47	0	H-4 \rightarrow LUMO (48%), HOMO \rightarrow L+7 (37%)
31529	317.17	0.0536	$\text{H-1} \longrightarrow \text{L+3 (78\%), H-3} \longrightarrow \text{LUMO (14\%)}$

Table S3: Selected TD-DFT (B3LYP/6-311G(d)) calculated energies, oscillator strengths andcompositions of the major electronic transitions of **6**

Energy (cm ⁻¹)	λ (nm)	Osc. Strengtl	h (f) Major Contributions
15340.66	651.87	0.0170	H-1→LUMO (56%), HOMO →L+1 (44%)
15760.07	634.53	0.3985	HOMO→LUMO (80%)
24591.03	406.65	0.8277	HOMO →L+1(55%), H-1 →LUMO (44%)
26163	382.22	2.4631	H-1 →L+1(70%), HOMO →LUMO (20%)
26521.92	377.04	0	HOMO →L+2 (80%)
29067.4	344.02	0.0321	HOMO →L+3 (91%)
29098.05	343.67	0	H-2→LUMO (56%), HOMO → L+4 (27%)
29478.74	339.23	0	HOMO → L+4 (70%), H-2 → LUMO (18%)
29805.4	335.51	0	H-1 →L+2 (85%)
29807.82	335.48	0.0014	HOMO→L+5 (94%)
30101.40	332.21	0	HOMO \longrightarrow L+6 (95%)
30982.16	322.77	0	H-3 → LUMO (75%), H-2 →L+1 (13%)
31862.92	313.85	0.0324	H-4 →LUMO (80%), H-1 →L+3 (9%)
32289.58	309.70	0.0116	H-1 →L+3 (88%)
32704.15	305.77	0	H-1 → L+4 (92%)

 Table S4: Coordinates for the optimized structure 5.

Center	ter Atomic Atomic Coordinates (Å)				
Number	Number	Туре	x	Y	z
1	8	0	-2.378445	1.623352	0.028894
2	8	0	-2.190042	-0.906875	-0.099126
3	6	0	-2.028418	2.975770	-0.101987
4	6	0	-3.222887	3.699798	-0.258254
5	1	0	-3.291152	4.766137	-0.387957
6	6	0	-4.289973	2.796875	-0.242478
7	1	0	-5.330527	3.036810	-0.366590
8	6	0	-3.769187	1.494228	-0.069203
9	6	0	-4.342693	0.210996	-0.022855
10	6	0	-3.580191	-0.972215	0.015036
11	6	0	-3.915637	-2.335953	0.192815
12	1	0	-4.912539	-2.715187	0.328647
13	6	0	-2.738883	-3.085453	0.193320
14	1	0	-2.664585	-4.151520	0.321740
15	6	0	-1.652868	-2.207686	0.021880
16	6	0	-0.258688	-2.228009	-0.018565
17	1	0	0.170876	-1.241241	-0.133273
18	6	0	0.654226	-3.263912	0.096095
19	1	0	0.351250	-4.297052	0.207645
20	6	0	-5.828758	0.098366	-0.013707
21	6	0	-6.598877	0.767268	0.954661
22	1	0	-6.103892	1.355420	1.714828
23	6	0	-7.990980	0.664376	0.967458
24	1	0	-8.569199	1.176455	1.722015
25	6	0	-8.625306	-0.116942	0.006049
26	6	0	-7.892603	-0.792088	-0.965723
27	1	0	-8.396134	-1.387559	-1.712579
28	6	0	-6.501184	-0.680153	-0.972862
29	1	0	-5.932911	-1.185688	-1.741114
30	8	0	2.378444	-1.623352	-0.028894
31	8	0	2.190042	0.906875	0.099125
32	6	0	2.028417	-2.975770	0.101989

33	6	0	3.222886 -3.699797 0.258259
34	1	0	3.291150 -4.766137 0.387962
35	6	0	4.289972 -2.796875 0.242483
36	1	0	5.330526 -3.036811 0.366596
37	6	0	3.769187 -1.494228 0.069205
38	6	0	4.342694 -0.210996 0.022855
39	6	0	3.580191 0.972216 -0.015039
40	6	0	3.915636 2.335953 S 20 192819
41	1	0	4.912539 2.715188 -0.328653
42	6	0	2.738883 3.085454 -0.193324
43	1	0	2.664585 4.151520 -0.321745
44	6	0	1.652868 2.207687 -0.021882
45	6	0	0.258688 2.228010 0.018564
46	1	0	-0.170876 1.241242 0.133273
47	6	0	-0.654227 3.263913 -0.096094
48	1	0	-0.351251 4.297052 -0.207644
49	6	0	5.828758 -0.098366 0.013707
50	6	0	6.598878 -0.767271 -0.954658
51	1	0	6.103893 -1.355426 -1.714824
52	6	0	7.990980 -0.664379 -0.967456
53	1	0	8.569200 -1.176461 -1.722011
54	6	0	8.625306 0.116942 -0.006049
55	6	0	7.892603 0.792091 0.965721
56	1	0	8.396135 1.387565 1.712575
57	6	0	6.501184 0.680157 0.972860
58	1	0	5.932911 1.185694 1.741110
59	35	0	10.573352 0.268808 -0.021460
60	35	0	-10.573352 -0.268809 0.021460

Figure S20: Selected Frontier MOs of **4** calculated at the B3LYP/6-311G(d) level.

Figure S21: Selected Frontier MOs of 5 calculated at the B3LYP/6-311G(d) level.

Table S5: Average polarizability (α) value calculated using Gaussian 09 program (keyword = polar).

	α_{xx}	a_{xy}	α_{yy}	α_{xz}	α_{yz}	α_{zz}	α X 10 ⁻⁴¹ (Cm ² V ⁻¹)
4	1328.581	12.809	522.212	0.377	7.417	189.812	1121.49
5	1233.367	-27.081	544.487	-1.528	-10.244	217.240	1141.10
6	1321.528	-37.929	542.123	-1.590	-10.988	212.627	1096.48

Polarizability, $\alpha = 1/3 (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$; 1 au = 8.6396 X 10⁻³³ esu = 1.6487773 x 10⁻⁴¹ Cm²V⁻¹.

Figure S23: Five level energy state diagram to explain ESA assisted RSA in case of ns excitation which reduces to 3 level energy state diagram under ps and fs pulse excitations with practically no triplet states involved and only singlet state contributing.

Figure S24: Plot of β versus on axis fluence I₀ as a proof of ESA assisted RSA & not TPA

Figure S25: Femtosecond transient absorption spectra of compound 6 in DCM.

Complete reference 17 S29

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, **2009**.