AMgPO₄·6H₂O (A=Rb, Cs): strong SHG responses

originated from orderly PO₄ groups

Yuqiao Zhou, ^{a b} Liling Cao, ^a Chensheng Lin, ^a Min Luo, ^a Tao Yan, ^a Ning Ye *^a and Wendan Cheng ^a ^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China E-mail: nye@fjirsm.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

CONTENTS

- Table S1. Atomic coordinates (Å×10⁴) and equivalent isotropic displacements parameters (Å²×10³) for RbMgPO₄·6H₂O
- Table S2. Hydrogen coordinates (Å×10⁴) and isotropic displacement parameters (Å²×10³) for RbMgPO₄·6H₂O
- Table S3. Bond lengths (Å) for RbMgPO₄·6H₂O
- Table S4. Atomic coordinates ($Å \times 10^4$) and equivalent isotropic displacements parameters ($Å^2 \times 10^3$) for CsMgPO₄·6H₂O
- Table S5. Hydrogen coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for CsMgPO₄·6H₂O
- Table S6. Bond lengths (Å) for CsMgPO₄·6H₂O
- Table S7. Contribution of Different Geometrical Factors (g) for Structure Factors (C) in RbMgPO₄·6H₂O and CsMgPO₄·6H₂O
- Table S8. Direction and magnitude of MgO₆ octahedra in RbMgPO₄·6H₂O
- Table S9. Direction and magnitude of MgO₆ octahedra in CsMgPO₄·6H₂O
- Figure S1. Experimental and calculated Powder XRD patterns for $RbMgPO_4 \cdot 6H_2O$ (a) and $CsMgPO_4 \cdot 6H_2O$ (b)
- Figure S2. Thermogravimetric analysis curves for RbMgPO₄·6H₂O (a) and CsMgPO₄·6H₂O (b)
- Figure S3. Powder X-ray diffraction for $RbMgPO_4 \cdot 6H_2O$ (a) and $CsMgPO_4 \cdot 6H_2O$ (b) at

160 °C

Figure S4. Oscilloscope traces showing different SHG intensities for $RbMgPO_4 \cdot 6H_2O$ and $CsMgPO_4 \cdot 6H_2O$

paran					
atoms	х	У	Z	U(eq)	BVS
Rb(1)	5000	6498(1)	3988(1)	49(1)	0.85
Mg(1)	0	3869(4)	2528(2)	24(1)	2.00
P(1)	5000	10167(3)	1201(2)	23(1)	4.70
O(1)	5000	10404(7)	2553(4)	27(1)	1.78
O(2)	3172(4)	8959(5)	791(3)	25(1)	1.81
O(3)	5000	12450(7)	634(4)	30(1)	1.81
O(4)	2131(5)	4980(7)	1400(4)	38(1)	1.88
O(5)	0	891(8)	1609(5)	39(2)	2.01
O(6)	2213(5)	2709(5)	3623(3)	32(1)	1.86
O(7)	0	6976(8)	3343(4)	42(2)	1.94

Table S1. Atomic coordinates (Å×10⁴) and equivalent isotropic displacements parameters (Å²×10³) for RbMgPO₄·6H₂O

Table S2. Hydrogen coordinates (Å×10⁴) and isotropic displacement parameters $(Å^2 \times 10^3)$ for RbMgPO₄·6H₂O

atoms	х	У	Z	U(eq)
H(4A)	2310(60)	6280(20)	1320(50)	57
H(4B)	3000(50)	4180(50)	1180(50)	57
H(6A)	3030(50)	1980(70)	3250(30)	48
H(6B)	1960(70)	2150(70)	4270(20)	48
H(7A)	0	8120(20)	2958(17)	64
H(7B)	0	7200(30)	4065(10)	64
H(5)	1007	23	1245	64

Table S3. Bond lengths (Å) for RbMgPO₄·6H₂O

Rb(1)-O(1)	2.915(5)	O(4)#2-Rb(1)-Mg(1)#4	81.34(9)
Rb(1)-O(6)	3.061(4)	O(4)#3-Rb(1)-Mg(1)#4	127.05(8)
Rb(1)-O(6)#1	3.061(4)	O(5)#3-Rb(1)-Mg(1)#4	122.49(4)
Rb(1)-O(4)#2	3.237(5)	O(7)-Rb(1)-Mg(1)#4	139.36(9)
Rb(1)-O(4)#3	3.237(5)	O(7)#4-Rb(1)-Mg(1)#4	30.89(9)
Rb(1)-O(5)#3	3.383(6)	P(1)-Rb(1)-Mg(1)#4	84.55(5)
Rb(1)-O(7)	3.537(3)	Mg(1)#3-Rb(1)-Mg(1)#4	112.06(4)
Rb(1)-O(7)#4	3.537(3)	Mg(1)-Rb(1)-Mg(1)#4	112.08(8)
Rb(1)-P(1)	3.892(3)	O(1)-Rb(1)-H(6A)	125.1(8)
Rb(1)-Mg(1)#3	4.021(4)	O(6)-Rb(1)-H(6A)	15.0(3)
Rb(1)-Mg(1)	4.157(3)	O(6)#1-Rb(1)-H(6A)	64.2(5)
Rb(1)-Mg(1)#4	4.157(3)	O(4)#2-Rb(1)-H(6A)	99.5(8)
Rb(1)-H(6A)	3.22(5)	O(4)#3-Rb(1)-H(6A)	77.4(6)
Mg(1)-O(4)#5	2.066(4)	O(5)#3-Rb(1)-H(6A)	130.0(6)
Mg(1)-O(4)	2.066(4)	O(7)-Rb(1)-H(6A)	66.9(6)
Mg(1)-O(6)	2.094(4)	O(7)#4-Rb(1)-H(6A)	115.5(3)
Mg(1)-O(6)#5	2.094(4)	P(1)-Rb(1)-H(6A)	107.2(8)

Mg(1)-O(5)	2.118(5)	Mg(1)#3-Rb(1)-H(6A)	102.1(7)
Mg(1)-O(7)	2.134(6)	Mg(1)-Rb(1)-H(6A)	37.5(7)
Mg(1)-Rb(1)#6	4.021(4)	Mg(1)#4-Rb(1)-H(6A)	84.6(3)
Mg(1)-Rb(1)#7	4.157(3)	O(4)#5-Mg(1)-O(4)	90.7(3)
P(1)-O(2)	1.538(3)	O(4)#5-Mg(1)-O(6)	178.13(19)
P(1)-O(2)#1	1.538(3)	O(4)-Mg(1)-O(6)	87.88(16)
P(1)-O(1)	1.540(5)	O(4)#5-Mg(1)-O(6)#5	87.88(16)
P(1)-O(3)	1.553(4)	O(4)-Mg(1)-O(6)#5	178.13(19)
O(4)-Rb(1)#6	3.237(5)	O(6)-Mg(1)-O(6)#5	93.5(2)
O(4)-H(4A)	0.819(10)	O(4)#5-Mg(1)-O(5)	89.15(18)
O(4)-H(4B)	0.813(10)	O(4)-Mg(1)-O(5)	89.15(18)
O(5)-Rb(1)#6	3.383(6)	O(6)-Mg(1)-O(5)	89.63(15)
O(5)-H(5)	0.97	O(6)#5-Mg(1)-O(5)	89.63(15)
O(6)-H(6A)	0.834(10)	O(4)#5-Mg(1)-O(7)	88.16(16)
O(6)-H(6B)	0.831(10)	O(4)-Mg(1)-O(7)	88.16(16)
O(7)-Rb(1)#7	3.537(3)	O(6)-Mg(1)-O(7)	92.99(15)
O(7)-H(7A)	0.830(10)	O(6)#5-Mg(1)-O(7)	92.99(15)
O(7)-H(7B)	0.831(10)	O(5)-Mg(1)-O(7)	176.2(2)
O(1)-Rb(1)-O(6)	124.07(9)	O(4)#5-Mg(1)-Rb(1)#6	53.19(14)
O(1)-Rb(1)-O(6)#1	124.07(9)	O(4)-Mg(1)-Rb(1)#6	53.19(14)
O(6)-Rb(1)-O(6)#1	77.80(14)	O(6)-Mg(1)-Rb(1)#6	124.94(11)
O(1)-Rb(1)-O(4)#2	134.94(10)	O(6)#5-Mg(1)-Rb(1)#6	124.94(11)
O(6)-Rb(1)-O(4)#2	100.53(10)	O(5)-Mg(1)-Rb(1)#6	57.27(16)
O(6)#1-Rb(1)-O(4)#2	67.21(10)	O(7)-Mg(1)-Rb(1)#6	118.90(14)
O(1)-Rb(1)-O(4)#3	134.94(10)	O(4)#5-Mg(1)-Rb(1)	134.92(15)
O(6)-Rb(1)-O(4)#3	67.21(10)	O(4)-Mg(1)-Rb(1)	61.72(14)
O(6)#1-Rb(1)-O(4)#3	100.53(10)	O(6)-Mg(1)-Rb(1)	45.07(11)
O(4)#2-Rb(1)-O(4)#3	54.00(14)	O(6)#5-Mg(1)-Rb(1)	120.15(13)
O(1)-Rb(1)-O(5)#3	95.40(13)	O(5)-Mg(1)-Rb(1)	122.48(5)
O(6)-Rb(1)-O(5)#3	119.02(9)	O(7)-Mg(1)-Rb(1)	58.30(5)
O(6)#1-Rb(1)-O(5)#3	119.02(9)	Rb(1)#6-Mg(1)-Rb(1)	114.83(4)
O(4)#2-Rb(1)-O(5)#3	52.61(11)	O(4)#5-Mg(1)-Rb(1)#7	61.72(14)
O(4)#3-Rb(1)-O(5)#3	52.61(11)	O(4)-Mg(1)-Rb(1)#7	134.92(15)
O(1)-Rb(1)-O(7)	79.34(7)	O(6)-Mg(1)-Rb(1)#7	120.15(13)
O(6)-Rb(1)-O(7)	54.83(10)	O(6)#5-Mg(1)-Rb(1)#7	45.07(11)
O(6)#1-Rb(1)-O(7)	130.41(11)	O(5)-Mg(1)-Rb(1)#7	122.48(5)
O(4)#2-Rb(1)-O(7)	129.87(10)	O(7)-Mg(1)-Rb(1)#7	58.30(5)
O(4)#3-Rb(1)-O(7)	75.88(10)	Rb(1)#6-Mg(1)-Rb(1)#7	114.83(4)
O(5)#3-Rb(1)-O(7)	98.15(8)	Rb(1)-Mg(1)-Rb(1)#7	112.07(8)
O(1)-Rb(1)-O(7)#4	79.34(7)	O(2)-P(1)-O(2)#1	110.1(3)
O(6)-Rb(1)-O(7)#4	130.41(11)	O(2)-P(1)-O(1)	110.32(18)
O(6)#1-Rb(1)-O(7)#4	54.83(10)	O(2)#1-P(1)-O(1)	110.32(18)
O(4)#2-Rb(1)-O(7)#4	75.88(10)	O(2)-P(1)-O(3)	108.51(17)
O(4)#3-Rb(1)-O(7)#4	129.87(10)	O(2)#1-P(1)-O(3)	108.51(17)

$\Omega(5)$ #3-Rb(1)- $\Omega(7)$ #4	98 15(8)	O(1)-P(1)-O(3)	109 0(3)
O(7)-Rb(1)-O(7)#4	154 21(14)	$O(2)_{P(1)} = Bh(1)$	87 80(16)
$O(1)_{Bb}(1)_{P}(1)$	20 35(8)	O(2) #1 - P(1) - Bb(1)	87.80(16)
O(1)-R $b(1)$ -P(1)	20.33(8)	O(2)#1-1(1)-Rb(1) O(1)-P(1)-Rb(1)	<i>4</i> 1 16(17)
O(6) + 1 - Pb(1) - D(1)	109.72(7)	O(2) - P(1) - Rb(1)	41.10(17)
O(0)#1-ND(1)-F(1) O(4)#2 Pb(1) D(1)	109.72(7)	$D(3)^{-1}(1)^{-1}ND(1)$	110 5(1)
O(4)#2 Pb(1) D(1)	140.34(8)	P(1) - O(1) - ND(1) Na(1) - O(4) Pb(1) + 6	110.3(2)
O(4)#3-ND(1)-P(1) O(5)#3 Pb(1) D(1)	140.34(8)	$M_{\alpha}(1) = O(4) + N_{\alpha}(1) + O(4)$	120(2)
O(3)#3-ND(1)-P(1)	115.75(10)	N(1) = O(4) = O(4)	120(3)
O(7)+K $D(1)$ -P(1)	77.48(7)	$RD(1)#0-O(4)-\Pi(4A)$	104(4)
O(7)#4-KD(1)-P(1)	77.48(7)	Mg(1) - O(4) - H(4B)	120(3)
O(1)-RD(1)-IVIg(1)#3	127.19(10)	RD(1)#6-U(4)-H(4B)	85(4)
O(6)-RD(1)-IVIg(1)#3	95.27(6)	H(4A)-O(4)-H(4B)	117(2)
O(6)#1-Rb(1)-Mg(1)#3	95.27(6)	Mg(1)-O(5)-Rb(1)#6	90.94(18)
O(4)#2-Rb(1)-Mg(1)#3	30.73(7)	Mg(1)-O(5)-H(5)	133./
O(4)#3-Rb(1)-Mg(1)#3	30.73(7)	Rb(1)#6-O(5)-H(5)	83.8
O(5)#3-Rb(1)-Mg(1)#3	31.78(9)	Mg(1)-O(6)-Rb(1)	105.96(13)
O(7)-Rb(1)-Mg(1)#3	102.20(7)	Mg(1)-O(6)-H(6A)	112(3)
O(7)#4-Rb(1)-Mg(1)#3	102.20(7)	Rb(1)-O(6)-H(6A)	93(4)
P(1)-Rb(1)-Mg(1)#3	147.54(6)	Mg(1)-O(6)-H(6B)	121(3)
O(1)-Rb(1)-Mg(1)	95.88(7)	Rb(1)-O(6)-H(6B)	109(4)
O(6)-Rb(1)-Mg(1)	28.97(6)	H(6A)-O(6)-H(6B)	111.5(18)
O(6)#1-Rb(1)-Mg(1)	99.60(9)	Mg(1)-O(7)-Rb(1)	90.81(9)
O(4)#2-Rb(1)-Mg(1)	127.05(8)	Mg(1)-O(7)-Rb(1)#7	90.81(9)
O(4)#3-Rb(1)-Mg(1)	81.34(9)	Rb(1)-O(7)-Rb(1)#7	154.21(14)
O(5)#3-Rb(1)-Mg(1)	122.49(4)	Mg(1)-O(7)-H(7A)	122.6(15)
O(7)-Rb(1)-Mg(1)	30.89(9)	Rb(1)-O(7)-H(7A)	100.4(2)
O(7)#4-Rb(1)-Mg(1)	139.36(9)	Rb(1)#7-O(7)-H(7A)	100.4(2)
P(1)-Rb(1)-Mg(1)	84.55(5)	Mg(1)-O(7)-H(7B)	125.2(14)
Mg(1)#3-Rb(1)-Mg(1)	112.06(4)	Rb(1)-O(7)-H(7B)	79.03(18)
O(1)-Rb(1)-Mg(1)#4	95.88(7)	Rb(1)#7-O(7)-H(7B)	79.03(18)
O(6)-Rb(1)-Mg(1)#4	99.60(9)	H(7A)-O(7)-H(7B)	112.2(18)
Rb(1)-O(1)	2.915(5)	O(4)#2-Rb(1)-Mg(1)#4	81.34(9)
Rb(1)-O(6)	3.061(4)	O(4)#3-Rb(1)-Mg(1)#4	127.05(8)
Rb(1)-O(6)#1	3.061(4)	O(5)#3-Rb(1)-Mg(1)#4	122.49(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,z #2 x+1/2,-y+1,z+1/2 #3 -x+1/2,-y+1,z+1/2 #4 x+1,y,z #5 -x,y,z #6 -x+1/2,-y+1,z-1/2 #7 x-1,y,z

			0		
atoms	х	У	Z	U(eq)	BVS
Cs(1)	3333	6667	2643(1)	44(1)	0.72
Mg(1)	6667	3333	3886(2)	19(1)	2.13
O(3)	5231(2)	462(4)	4882(2)	37(1)	1.81
O(4)	8127(2)	6253(4)	2966(2)	35(1)	1.76
P(1)	0	0	5446(1)	16(1)	4.78
O(1)	1215(2)	2429(3)	5860(2)	23(1)	1.53
O(2)	0	0	4151(3)	24(1)	1.50

Table S4. Atomic coordinates (Å×10⁴) and equivalent isotropic displacements parameters (Å²×10³) for CsMgPO₄·6H₂O

Table S5. Hydrogen coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for CsMgPO₄·6H₂O

	- , · · · · · · · · · · · · · · · · · ·			
atoms	х	У	Z	U(eq)
H(3)	5950(60)	-100(70)	5120(40)	55
H(4A)	8714(19)	7430(40)	3340(30)	53
H(4B)	8220(30)	6440(60)	2286(9)	53

Table S6. Bond lengths (Å) for $CsMgPO_4 \cdot 6H_2O$

Cs(1)-O(4)#1	3.4852(3)	O(3)#6-Cs(1)-O(3)#10	112.093(12)
Cs(1)-O(4)#2	3.4852(3)	O(3)#7-Cs(1)-O(3)#10	145.63(2)
Cs(1)-O(4)#3	3.4852(3)	O(3)#8-Cs(1)-O(3)#10	145.63(2)
Cs(1)-O(4)#4	3.4852(3)	O(3)#9-Cs(1)-O(3)#10	47.23(6)
Cs(1)-O(4)	3.4852(3)	O(4)#1-Cs(1)-O(3)#11	118.61(4)
Cs(1)-O(4)#5	3.4852(3)	O(4)#2-Cs(1)-O(3)#11	97.53(3)
Cs(1)-O(3)#6	3.507(3)	O(4)#3-Cs(1)-O(3)#11	118.61(4)
Cs(1)-O(3)#7	3.507(3)	O(4)#4-Cs(1)-O(3)#11	97.53(3)
Cs(1)-O(3)#8	3.507(3)	O(4)-Cs(1)-O(3)#11	71.62(5)
Cs(1)-O(3)#9	3.716(3)	O(4)#5-Cs(1)-O(3)#11	71.62(5)
Cs(1)-O(3)#10	3.716(3)	O(3)#6-Cs(1)-O(3)#11	145.63(2)
Cs(1)-O(3)#11	3.716(3)	O(3)#7-Cs(1)-O(3)#11	145.63(2)
Mg(1)-O(4)#8	2.063(2)	O(3)#8-Cs(1)-O(3)#11	112.093(12)
Mg(1)-O(4)#5	2.063(2)	O(3)#9-Cs(1)-O(3)#11	47.23(6)
Mg(1)-O(4)	2.063(2)	O(3)#10-Cs(1)-O(3)#11	47.23(6)
Mg(1)-O(3)#5	2.090(3)	O(4)#8-Mg(1)-O(4)#5	94.35(11)
Mg(1)-O(3)	2.090(3)	O(4)#8-Mg(1)-O(4)	94.35(11)
Mg(1)-O(3)#8	2.090(3)	O(4)#5-Mg(1)-O(4)	94.35(11)
Mg(1)-Cs(1)#12	4.2561(7)	O(4)#8-Mg(1)-O(3)#5	87.39(7)
Mg(1)-Cs(1)#13	4.2561(7)	O(4)#5-Mg(1)-O(3)#5	177.43(14)
Mg(1)-Cs(1)#14	4.484(2)	O(4)-Mg(1)-O(3)#5	87.39(7)
O(3)-Cs(1)#12	3.507(3)	O(4)#8-Mg(1)-O(3)	87.39(7)
O(3)-Cs(1)#14	3.716(3)	O(4)#5-Mg(1)-O(3)	87.39(7)
O(3)-H(3)	0.817(10)	O(4)-Mg(1)-O(3)	177.43(14)

O(4)-Cs(1)#13	3.4852(3)	O(3)#5-Mg(1)-O(3)	90.81(14)
O(4)-H(4A)	0.830(10)	O(4)#8-Mg(1)-O(3)#8	177.43(14)
O(4)-H(4B)	0.819(10)	O(4)#5-Mg(1)-O(3)#8	87.39(7)
P(1)-O(1)	1.536(2)	O(4)-Mg(1)-O(3)#8	87.39(7)
P(1)-O(1)#7	1.536(2)	O(3)#5-Mg(1)-O(3)#8	90.81(14)
P(1)-O(1)#15	1.536(2)	O(3)-Mg(1)-O(3)#8	90.81(14)
P(1)-O(2)	1.545(4)	O(4)#8-Mg(1)-Cs(1)#12	54.395(14)
O(4)#1-Cs(1)-O(4)#2	51.46(7)	O(4)#5-Mg(1)-Cs(1)#12	54.395(14)
O(4)#1-Cs(1)-O(4)#3	67.72(7)	O(4)-Mg(1)-Cs(1)#12	127.49(10)
O(4)#2-Cs(1)-O(4)#3	118.790(13)	O(3)#5-Mg(1)-Cs(1)#12	125.708(11)
O(4)#1-Cs(1)-O(4)#4	118.790(14)	O(3)-Mg(1)-Cs(1)#12	55.08(9)
O(4)#2-Cs(1)-O(4)#4	164.88(7)	O(3)#8-Mg(1)-Cs(1)#12	125.708(11)
O(4)#3-Cs(1)-O(4)#4	51.46(7)	O(4)#8-Mg(1)-Cs(1)#13	54.395(14)
O(4)#1-Cs(1)-O(4)	118.790(14)	O(4)#5-Mg(1)-Cs(1)#13	127.49(10)
O(4)#2-Cs(1)-O(4)	67.72(7)	O(4)-Mg(1)-Cs(1)#13	54.395(14)
O(4)#3-Cs(1)-O(4)	164.88(7)	O(3)#5-Mg(1)-Cs(1)#13	55.08(9)
O(4)#4-Cs(1)-O(4)	118.790(13)	O(3)-Mg(1)-Cs(1)#13	125.708(11)
O(4)#1-Cs(1)-O(4)#5	164.88(7)	O(3)#8-Mg(1)-Cs(1)#13	125.708(11)
O(4)#2-Cs(1)-O(4)#5	118.790(14)	Cs(1)#12-Mg(1)-Cs(1)#13	108.54(3)
O(4)#3-Cs(1)-O(4)#5	118.790(14)	O(4)#8-Mg(1)-Cs(1)	127.49(10)
O(4)#4-Cs(1)-O(4)#5	67.72(7)	O(4)#5-Mg(1)-Cs(1)	54.395(14)
O(4)-Cs(1)-O(4)#5	51.46(7)	O(4)-Mg(1)-Cs(1)	54.395(14)
O(4)#1-Cs(1)-O(3)#6	48.45(5)	O(3)#5-Mg(1)-Cs(1)	125.708(11)
O(4)#2-Cs(1)-O(3)#6	48.45(5)	O(3)-Mg(1)-Cs(1)	125.708(11)
O(4)#3-Cs(1)-O(3)#6	87.80(4)	O(3)#8-Mg(1)-Cs(1)	55.08(9)
O(4)#4-Cs(1)-O(3)#6	116.65(5)	Cs(1)#12-Mg(1)-Cs(1)	108.54(3)
O(4)-Cs(1)-O(3)#6	87.80(4)	Cs(1)#13-Mg(1)-Cs(1)	108.54(3)
O(4)#5-Cs(1)-O(3)#6	116.65(5)	O(4)#8-Mg(1)-Cs(1)#14	122.12(8)
O(4)#1-Cs(1)-O(3)#7	87.80(4)	O(4)#5-Mg(1)-Cs(1)#14	122.12(8)
O(4)#2-Cs(1)-O(3)#7	116.65(5)	O(4)-Mg(1)-Cs(1)#14	122.12(8)
O(4)#3-Cs(1)-O(3)#7	48.45(5)	O(3)#5-Mg(1)-Cs(1)#14	55.31(10)
O(4)#4-Cs(1)-O(3)#7	48.45(5)	O(3)-Mg(1)-Cs(1)#14	55.31(10)
O(4)-Cs(1)-O(3)#7	116.65(5)	O(3)#8-Mg(1)-Cs(1)#14	55.31(10)
O(4)#5-Cs(1)-O(3)#7	87.80(4)	Cs(1)#12-Mg(1)-Cs(1)#14	110.39(2)
O(3)#6-Cs(1)-O(3)#7	68.22(6)	Cs(1)#13-Mg(1)-Cs(1)#14	110.39(2)
O(4)#1-Cs(1)-O(3)#8	116.65(5)	Cs(1)-Mg(1)-Cs(1)#14	110.39(2)
O(4)#2-Cs(1)-O(3)#8	87.80(4)	Mg(1)-O(3)-Cs(1)#12	95.67(11)
O(4)#3-Cs(1)-O(3)#8	116.65(5)	Mg(1)-O(3)-Cs(1)#14	97.14(11)
O(4)#4-Cs(1)-O(3)#8	87.80(4)	Cs(1)#12-O(3)-Cs(1)#14	167.19(7)
O(4)-Cs(1)-O(3)#8	48.45(5)	Mg(1)-O(3)-H(3)	122(3)
O(4)#5-Cs(1)-O(3)#8	48.45(5)	Cs(1)#12-O(3)-H(3)	90(4)
O(3)#6-Cs(1)-O(3)#8	68.22(6)	Cs(1)#14-O(3)-H(3)	83(4)
O(3)#7-Cs(1)-O(3)#8	68.22(6)	Mg(1)-O(4)-Cs(1)#13	96.84(4)
O(4)#1-Cs(1)-O(3)#9	97.53(3)	Mg(1)-O(4)-Cs(1)	96.84(4)

O(4)#2-Cs(1)-O(3)#9	118.61(4)	Cs(1)#13-O(4)-Cs(1)	164.88(7)
O(4)#3-Cs(1)-O(3)#9	71.62(5)	Mg(1)-O(4)-H(4A)	116(3)
O(4)#4-Cs(1)-O(3)#9	71.62(5)	Cs(1)#13-O(4)-H(4A)	89.9(3)
O(4)-Cs(1)-O(3)#9	118.61(4)	Cs(1)-O(4)-H(4A)	89.9(3)
O(4)#5-Cs(1)-O(3)#9	97.53(3)	Mg(1)-O(4)-H(4B)	130(3)
O(3)#6-Cs(1)-O(3)#9	145.63(2)	Cs(1)#13-O(4)-H(4B)	83.14(14)
O(3)#7-Cs(1)-O(3)#9	112.093(12)	Cs(1)-O(4)-H(4B)	83.14(15)
O(3)#8-Cs(1)-O(3)#9	145.63(2)	H(4A)-O(4)-H(4B)	114.2(19)
O(4)#1-Cs(1)-O(3)#10	71.62(5)	O(1)-P(1)-O(1)#7	110.14(10)
O(4)#2-Cs(1)-O(3)#10	71.62(5)	O(1)-P(1)-O(1)#15	110.14(10)
O(4)#3-Cs(1)-O(3)#10	97.53(3)	O(1)#7-P(1)-O(1)#15	110.14(10)
O(4)#4-Cs(1)-O(3)#10	118.61(4)	O(1)-P(1)-O(2)	108.80(10)
O(4)-Cs(1)-O(3)#10	97.53(3)	O(1)#7-P(1)-O(2)	108.80(10)
O(4)#5-Cs(1)-O(3)#10	118.61(4)	O(1)#15-P(1)-O(2)	108.80(10)

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x-y+1	,z #2	-x+y+1,-	x+2,z
#3 x-1,y,z	#4 -x+y,-	x+1,z	#5 -y+1,x-y,z
#6 x,y+1,z	#7 -y,x-y	/,z #	8 -x+y+1,-x+1,z
#9 y,-x+y+1,z-	1/2 ‡	‡10 −x+1,	,-y+1,z-1/2
#11 x-y,x,z-1/2	2 #12	2 x,y-1,z	#13 x+1,y,z
#14 -x+1,-y+1	,z+1/2	#15 -x	+y,-x,z

Table S7. Contribution of Different Geometrical Factors (g) for Structure Factors (C) in $RbMgPO_4 \cdot 6H_2O$ and $CsMgPO_4 \cdot 6H_2O$

Crystals (n)	g ₁₁₃ /n	g ₂₂₃ /n	g ₃₁₁ /n	g ₃₂₂ /n	g ₃₃₃ /n
$RbMgPO_4 \cdot 6H_2O$ (n = 2)	0.355	0.449	0.355	0.449	0.803
$CsMgPO_4 \cdot 6H_2O$ (n = 2)	0	0	0.499	0	1.000

Table S8. Direction and magnitude of NigO ₆ octaneora in KDNgPO ₄ · σ P ₂ C	Table S8. Direction ar	d magnitude of	f MgO ₆ octahedra	in RbMgPO ₄ ·6H ₂ O
---	------------------------	----------------	------------------------------	---

species	U _x /D	U _y /D	U _z /D	U _t /D
Mg(1)O ₆	0.0000	0.1955	1.9888	1.9984
$Mg(1)O_6$	0.0000	-0.1955	1.9888	1.9984
MgO ₆ (in unit cell)	0.0000	0.0000	3.9776	3.9776

10 Me	Table S9. Direction a	nd magnitude of	f MgO ₆ octahedra	in CsMgPO₄·6H ₂ O
--------	-----------------------	-----------------	------------------------------	------------------------------

	0	U -	U .	
species	U _x /D	U _y /D	U _z /D	U _t /D
Mg(1)O ₆	0.0000	0.0018	-2.8776	2.8776
Mg(2)O ₆	0.0000	-0.0019	-2.8776	2.8776
MgO ₆ (in unit cell)	0.0000	-0.0001	-5.7552	5.7552

Figure S1. Experimental and calculated Powder XRD patterns for $RbMgPO_4 \cdot 6H_2O$ (a) and $CsMgPO_4 \cdot 6H_2O$ (b)

(a)

Figure S2. Thermogravimetric analysis curves for RbMgPO₄·6H₂O (a) and CsMgPO₄·6H₂O (b)

(a)

Figure S3. Powder X-ray diffraction for RbMgPO₄·6H₂O (a) and CsMgPO₄·6H₂O (b) at

160 °C

(a)

Figure S4. Oscilloscope traces showing different SHG intensities for $RbMgPO_4 \cdot 6H_2O$ and $CsMgPO_4 \cdot 6H_2O$