Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Transparent ITO mechanical crack-based pressure and strain sensor

Taemin Lee,^{†a,b} Yong Whan Choi,^{†a,} Gunhee Lee,^{a,b} Peter V. Pikhitsa,^a Daeshik Kang,^c Sang Moon Kim,^d Mansoo Choi^{*a,b}

- ^a Global Frontier Center for Multiscale Energy Systems, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
- ^b Division of WCU Multiscale Mechanical Design, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea
- ^c Department of Mechanical Engineering, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Republic of Korea
- ^d Department of Mechanical Engineering, Incheon National University, Incheon, 406-772,Korea

[†]These authors contributed equally to this work.
*To whom correspondence should be addressed. E-mail: <u>mchoi@snu.ac.kr</u>

Keywords: Strain sensor, Pressure sensor, Transparent, ITO

Fig. S1. Fabrication of the ITO crack sensor. (a) ITO layer is deposited by sputtering on PET substrate. **(b)** Strain of 2% is applied to generate cracks on the surface.

Fig. S2. SEM images of crack opening. (a) SEM image of the crack on the ITO layer with no external tension. **(b)** SEM image of the crack on the ITO layer with strain of 2%.

Fig. S3. AFM image of the crack on the ITO deposited PDMS film. The height of the crack is about 1,045 nm.

Fig. S4. The graph for loading/unloading tests with the ITO mechanical crack-based sensor with various strains.

Fig. S5. A marathon test of the ITO crack sensor by repeating loading/unloading process about 5,000 cycles at strain from 0% to 2%. (a) A final normalized resistance of a marathon test at a certain period (about 500 cycles). **(b)** Loading/unloading test after 5,000 cyclic tests.

Fig. S6. (a) Strain-dependent gauge factor by taking the derivative of R/R_0 with respect to strains from 0% to 2%. **(b)** Local gauge factor $dln(R)/d\varepsilon$ versus strains from 0% to 2%.

Fig. S7. Loading curves from the ITO crack sensor depending on scanning speeds. The scanning speeds of 0.1 mm/min and 10 mm/min.

Fig. S8. **Pressure and strain sensors depending on the sensor frame structure. (a)** Photo image of acrylic frame for strain sensing mode. **(b)** Photo image of acrylic frame for pressure sensing mode. **(c)** Resistance change on the strain sensing mode with vertical pressure (0.15 kPa). **(d)** Resistance change on the pressure sensing mode with vertical pressure (0.15 kPa).

Fig. S9. Fabrication of the multi-pixel array pressure sensor. (a) ITO layer is deposited by a sputter on a PET substrate through a shadow mask. **(b)** Thin Ag metal layer (about 13 nm) is deposited on the ITO layer coated with the PET film by a thermal evaporator through an electrode path shadow mask. **(c)** A PDMS with 4 by 4 square hole is attached on the ITO layer coated with the PET film. **(d)** The edges of each pixel facing each other were cut.

Fig. S10. Normalized resistance changes versus discrete pressure on the multi-pixel array pressure sensor. (a) A response of normalized resistance of 0.176 kPa. (b) A response of normalized resistance of 0.12 kPa.